Skip to main content

Fructooligosaccharides: Effects, Mechanisms, and Applications

  • Chapter
  • First Online:
Research Progress in Oligosaccharins

Abstract

Fructooligosaccharide (FOS) is a generic term for a series of homologous oligosaccharides in plants, composed of linear chains of fructose units, linked by β (2 → 1) bonds. As one of the most widely commercially available prebiotics, the health benefits of dietary FOS have long been appreciated. Numerous experimental studies have demonstrated the roles of FOS in boosting immunity, reducing the risk and severity of gastrointestinal infection, inflammation, diarrhea, inflammatory bowel disease, obesity related metabolic disorders, and promoting anticancerous effect. However, little is known about their effect on inducing resistance in plants. In this chapter, we mainly introduce the induced resistance of burdock fructooligosaccharide (BFO), which is one of the most intensively studied FOS, in plants and postharvest fruits. As a potential elicitor, BFO could modulate the expression of defense-related genes and accumulation of secondary metabolites, especially salicylic acid-mediated pathway, related with multiple signaling pathways and defense components to enhance host defense responses in plants. A variety of applications in food formulations, medical treatment, and agriculture are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Campbell JM, Fahey Jr GC, Wolf BW. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, ph and microflora in rats. J Nutr. 1997;127(1):130–6.

    CAS  PubMed  Google Scholar 

  2. Zentek J, Marquart B, Pietrzak T. Intestinal effects of mannanoligosaccharides, transgalactooligosaccharides, lactose and lactulose in dogs. J Nutr. 2002;132(6 Suppl 2):1682S–4.

    CAS  PubMed  Google Scholar 

  3. Scholtens PA, Goossens DA, Staiano A. Stool characteristics of infants receiving short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides: a review. World J Gastroenterol. 2014;20(37):13446–52.

    Article  PubMed  PubMed Central  Google Scholar 

  4. van de Wiele T, Boon N, Possemiers S, et al. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol. 2007;102(2):452–60.

    PubMed  Google Scholar 

  5. Kelly G. Inulin-type prebiotics—a review: Part 1. Altern Med Rev. 2008;13(4):315–29.

    PubMed  Google Scholar 

  6. Benkeblia N. Fructooligosaccharides and fructans analysis in plants and food crops. J Chromatogr A. 2013;1313:54–61.

    Article  CAS  PubMed  Google Scholar 

  7. Der Agopian RG, Soares CA, Purgatto E, et al. Identification of fructooligosaccharides in different banana cultivars. J Agric Food Chem. 2008;56(9):3305–10.

    Article  Google Scholar 

  8. Soleimani N, Hoseinifar SH, Merrifield DL, et al. Dietary supplementation of fructooligosaccharide (fos) improves the innate immune response, stress resistance, digestive enzyme activities and growth performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol. 2012;32(2):316–21.

    Article  CAS  PubMed  Google Scholar 

  9. Akrami R, Iri Y, Rostami HK, et al. Effect of dietary supplementation of fructooligosaccharide (fos) on growth performance, survival, lactobacillus bacterial population and hemato-immunological parameters of stellate sturgeon (Acipenser stellatus) juvenile. Fish Shellfish Immunol. 2013;35(4):1235–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hermann M, Freire I, Pazos C. Compositional diversity of the yacon storage root. CIP Program Report, 425–432, 1999.

    Google Scholar 

  11. Vilhena SMC, Câmara FLA, Kakihara ST. O cultivo de yacon no Brasil. Hortic Bras. 2000;18(1):5–8.

    Google Scholar 

  12. Prata MB, Mussatto SI, Rodrigues LR, et al. Fructooligosaccharide production by penicillium expansum. Biotechnol Lett. 2010;32(6):837–40.

    Article  CAS  PubMed  Google Scholar 

  13. Muir JG, Shepherd SJ, Rosella O, et al. Fructan and free fructose content of common Australian vegetables and fruit. J Agric Food Chem. 2007;55(16):6619–27.

    Article  CAS  PubMed  Google Scholar 

  14. Fontana JD, Grzybowski A, Tiboni M, et al. Fructo-oligosaccharide production from inulin through partial citric or phosphoric acid hydrolyses. J Med Food. 2011;14(11):1425–30.

    Article  CAS  PubMed  Google Scholar 

  15. Niness KR. Inulin and oligofructose: what are they? J Nutr. 1999;129(7 Suppl):1402S–6.

    CAS  PubMed  Google Scholar 

  16. Kim SS, Kim YJ, Rhee IK. Purification and characterization of a novel extracellular protease from Bacillus cereus KCTC 3674. Arch Microbiol. 2001;175(6):458–61.

    Article  CAS  PubMed  Google Scholar 

  17. Sangeetha PT, Ramesh MN, Prapulla SG. Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol. 2005;16(10):442–57.

    Article  CAS  Google Scholar 

  18. Guío F, Rodríguez MA, Alméciga-Diaz CJ, et al. Recent trends in fructooligosaccharides production. Recent Pat Food Nutr Agric. 2009;1:221–30.

    Article  PubMed  Google Scholar 

  19. Saavedra JM, Tschernia A. Human studies with probiotics and prebiotics: clinical implications. Br J Nutr. 2002;87:S241–6.

    Article  CAS  PubMed  Google Scholar 

  20. Sauer J, Richter K, Pool-Zobel B. Products formed during fermentation of the prebiotic inulin with human gut flora enhance expression of biotransformation genes in human primary colon cells. Br J Nutr. 2007;97(5):928–38.

    Article  CAS  PubMed  Google Scholar 

  21. Wang F, Feng G, Chen K. Defense responses of harvested tomato fruit to burdock fructooligosaccharide, a novel potential elicitor. Postharvest Biol Tec. 2009;52(1):110–6.

    Article  CAS  Google Scholar 

  22. Zhang PY, Wang JC, Liu SH, et al. A novel burdock fructooligosaccharide induces changes in the production of salicylates, activates defence enzymes and induces systemic acquired resistance to Colletotrichum orbiculare in cucumber seedlings. J Phytopathol. 2009;157(4):201–7.

    Article  CAS  Google Scholar 

  23. Hao L, Chen K, Li G. Physiological effects of burdock oligosaccharide on growth promotion and chilling resistance of cucumber seedlings. J Shanghai Jiaotong University (agricultural Science) 2006, 24(1):6–12.

    Google Scholar 

  24. He PQ, Tian L, Chen KS, et al. Induction of volatile organic compounds of Lycopersicon esculentum Mill. and its resistance to Botrytis cinerea Pers. by burdock oligosaccharide. J Integr Plant Biol. 2006;48(5):550–7.

    Article  CAS  Google Scholar 

  25. Dixon RA. Natural products and plant disease resistance. Nature. 2001;411(6839):843–7.

    Article  CAS  PubMed  Google Scholar 

  26. Guo M, Chen K, Zhang P. Transcriptome profile analysis of resistance induced by burdock fructooligosaccharide in tobacco. J Plant Physiol. 2012;169(15):1511–9.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao N, Zhuang X, Shrivastava G, et al. Analysis of insect-induced volatiles from rice. Methods Mol Biol. 2013;956:201–8.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang PY, Chen KS, He PQ, et al. Effects of crop development on the emission of volatiles in leaves of Lycopersicon esculentum and its inhibitory activity to Botrytis cinerea and Fusarium oxysporum. J Integr Plant Biol. 2008;50(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  29. Sun F, Zhang P, Guo M, et al. Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning. Food Chem. 2013;138(1):539–46.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H, Liu Z, Xu B, et al. Burdock fructooligosaccharide enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches. Carbohydr Polym. 2013;98(1):366–71.

    Article  CAS  PubMed  Google Scholar 

  31. Zeng W, Melotto M, He SY. Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol. 2010;21(5):599–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee S, Choi H, Suh S, et al. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol. 1999;121(1):147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Yin H, Wang Q, et al. Oligochitosan induced Brassica napus L. production of NO and H2O2 and their physiological function. Carbohydr Polym. 2009;75(4):612–7.

    Google Scholar 

  34. Guo Y, Guo M, Zhao W, et al. Burdock fructooligosaccharide induces stomatal closure in Pisum sativum. Carbohydr Polym. 2013;97(2):731–5.

    Article  CAS  PubMed  Google Scholar 

  35. Khokon MA, Uraji M, Munemasa S, et al. Chitosan-induced stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis. Bio-sci Biotechnol Biochem. 2010;74:2313–5.

    Article  CAS  Google Scholar 

  36. Melotto M, Underwood W, Koczan J, et al. Plant stomata function in innate immunity against bacterial invasion. Cell. 2006;126:969–80.

    Article  CAS  PubMed  Google Scholar 

  37. Grant M, Mansfield J. Early events in host-pathogen interactions. Curr Opin Plant Biol. 1999;2:312–9.

    Article  CAS  PubMed  Google Scholar 

  38. Nurnberger T, Scheel D. Signal transmission in the plant immune response. Trends Plant Sci. 2001;6:372–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kombrink E, Somssich IE. Defence responses of plants to pathogens. Adv Bot Res. 1995;21:1–34.

    Article  CAS  Google Scholar 

  40. Blumwald E, Aharon GS, Lam BC-H. Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci. 1998;3(9):342–6.

    Article  Google Scholar 

  41. Vallad GE, Goodman RM. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 2004;44:1920–34.

    Article  Google Scholar 

  42. Guo M, Chen K. Transcriptome profile analysis and signal transduction of resistance induced by burdock fructooligosaccharide in tobacco. Jinan: Shandong University; 2014.

    Google Scholar 

  43. Hoen PAC, Ariyurek Y, Thygesen HH, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and interlab portability over five microarray platforms. Nucleic Acids Res. 2008;36, e141.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu T, Qin Z, Zhou X, et al. Transcriptome profile analysis of floral sex determination in cucumber. J Plant Physiol. 2010;167(11):905–13.

    Article  CAS  PubMed  Google Scholar 

  45. Hua WP, Zhang Y, Jie S, et al. De novo transcriptome sequencing in salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics. 2011;98(4):272–9.

    Article  CAS  Google Scholar 

  46. Flamm G, Glinsmann W, Kritchevsky D, et al. Inulin and oligofructose as dietary fiber: a review of the evidence. CRC Critical Rev Food Sci Nutr. 2001;41:353–62.

    Article  CAS  Google Scholar 

  47. Flickinger EA, Loo JV, Fahey GC. Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals. CRC Critical Rev Food Sci Nutr. 2003;43:19–60.

    Article  CAS  Google Scholar 

  48. Shin HS, Lee JH, Pestka JJ, et al. Growth and viability of commercial Bifidobacterium spp in skim milk containing oligosaccharides and Inulin. J Food Sci. 2000;65(5):884–7.

    Google Scholar 

  49. Rao V. The prebiotic properties of oligofructose at low intake level. Nutr Res. 2001;21:843–8.

    Article  CAS  Google Scholar 

  50. Cherbut C, Michel C, Lecannu G. The prebiotic characteristics of fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats. J Nutr. 2003;133(1):21–7.

    CAS  PubMed  Google Scholar 

  51. Liu J, Pan X, Song Z, et al. Anti-inflammatory effect of burdock fructo-oligosaccharide on lipopolysaccharide-stimulated RAW264.7 cell. J Shandong Univ (Health Sci). 2012;50(12):41–6.

    CAS  Google Scholar 

  52. Kok NN, Taper HS, Delzenne NM. Oligofructose modulates lipid metabolism alterations induced by a fat-rich diet in rats. J Appl Toxicol. 1998;18(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  53. Cani PD, Neyrinck AM, Maton N, et al. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes Res. 2005;13(6):1000–7.

    Article  CAS  PubMed  Google Scholar 

  54. Delmee E, Cani PD, Gual G, et al. Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sci. 2006;79(10):1007–13.

    Article  CAS  PubMed  Google Scholar 

  55. Luo J, Rizkalla SW, Alamowitch C, et al. Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am J Clin Nutr. 1996;63(6):939–45.

    CAS  PubMed  Google Scholar 

  56. Daubioul CA, Horsmans Y, Lambert P, et al. Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. Eur J Clin Nutr. 2005;59(5):723–6.

    Article  CAS  PubMed  Google Scholar 

  57. Holmes E, Li JV, Marchesi JR, et al. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 2012;16(5):559–64.

    Article  CAS  PubMed  Google Scholar 

  58. Suzuki TA, Worobey M. Geographical variation of human gut microbial composition. Biol Lett. 2014;10(2):20131037.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fukuda S, Ohno H. Gut microbiome and metabolic diseases. Semin Immunopathol. 2014;36(1):103–14.

    Article  CAS  PubMed  Google Scholar 

  60. Spiller R, Aziz Q, Creed F, et al. Guidelines on the irritable bowel syndrome: mechanisms and practical management. Gut. 2007;56(12):1770–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Paineau D, Payen F, Panserieu S, et al. The effects of regular consumption of short-chain fructo-oligosaccharides on digestive comfort of subjects with minor functional bowel disorders. Br J Nutr. 2008;99(2):311–8.

    Article  CAS  PubMed  Google Scholar 

  62. Pool-Zobel BL, Van Loo J, Rowland IR, et al. Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Br J Nutr. 2002;87:S273–81.

    Article  CAS  PubMed  Google Scholar 

  63. Taper HS, Roberfroid MB. Inulin/oligofructose and anticancer therapy. Br J Nutr. 2002;87:S283–6.

    Article  CAS  PubMed  Google Scholar 

  64. Terry LA, Joyce DC. Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biol Tec. 2004;32(1):1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoshan Chen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guo, M., Chen, G., Chen, K. (2016). Fructooligosaccharides: Effects, Mechanisms, and Applications. In: Yin, H., Du, Y. (eds) Research Progress in Oligosaccharins. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3518-5_5

Download citation

Publish with us

Policies and ethics