Skip to main content

Fetal Stem Cell Banking

  • Chapter
  • First Online:
Fetal Stem Cells in Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 804 Accesses

Abstract

Fetal stem/stromal cells can be isolated from various tissues and fluids including fetal blood, hematopoietic and somatic organs, amniotic fluid, and placenta. Fetal stem cells are emerging as a potential autologous and allogeneic cell source for several therapeutic applications in the field of cell therapy and regenerative medicine. While ageing of stem cells is not well understood, fetal stem/stromal cells are believed to have higher potential of growth and differentiation compared to their adult counterparts. The substantial advancements of cell banking have provided significant contribution to the rapid applications of cell therapy. Yet, the manufacturing of clinical grade fetal stem cells remains a hindrance due to the lack of a safe and effective cryopreservation compliant with good manufacturing practice for these cells. Whether fetal stem/stromal cells are to be used as an autologous or allogeneic cell therapy approach, therapeutic applications and outcomes are highly dependent on the long term ability to preserve these cells and maintain their viability and biological functions. The focus of this review is to discuss stem cells isolated from different fetal tissues and fluids, their cryopreservation approaches, and the commercial and regulatory aspects of these cells for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsuji H, Miyoshi S, Ikegami Y, Hida N, Asada H, et al. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res. 2010;106(10):1613–23.

    Article  CAS  PubMed  Google Scholar 

  2. Nishiyama N, Miyoshi S, Hida N, Uyama T, Okamoto K, et al. The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells. 2007;25(8):2017–24.

    Article  CAS  PubMed  Google Scholar 

  3. Okamoto K, Miyoshi S, Toyoda M, Hida N, Ikegami Y, et al. ‘Working’ cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells. Exp Cell Res. 2007;313(12):2550–62.

    Article  CAS  PubMed  Google Scholar 

  4. Lee JM, Jung J, Lee HJ, Jeong SJ, Cho KJ, et al. Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol. 2012;13(2):219–24.

    Article  CAS  PubMed  Google Scholar 

  5. Poloni A, Maurizi G, Babini L, Serrani F, Berardinelli E, et al. Human mesenchymal stem cells from chorionic villi and amniotic fluid are not susceptible to transformation after extensive in vitro expansion. Cell Transplant. 2011;20(5):643–54.

    Article  PubMed  Google Scholar 

  6. Lovelock JE. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta. 1953;11(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  7. Woods EJ, Liu J, Zieger MA, Lakey JR, Critser JK. Water and cryoprotectant permeability characteristics of isolated human and canine pancreatic islets. Cell Transplant. 1999;8(5):549–59.

    CAS  PubMed  Google Scholar 

  8. Woods EJ, Liu J, Gilmore JA, Reid TJ, Gao DY, et al. Determination of human platelet membrane permeability coefficients using the Kedem-Katchalsky formalism: estimates from two- vs three-parameter fits. Cryobiology. 1999;38(3):200–8.

    Article  CAS  PubMed  Google Scholar 

  9. Woods EJ, Benson JD, Agca Y, Critser JK. Fundamental cryobiology of reproductive cells and tissues. Cryobiology. 2004;48(2):146–56.

    Article  CAS  PubMed  Google Scholar 

  10. Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, et al. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol. 2000;18(2):163–7.

    Article  CAS  PubMed  Google Scholar 

  11. Cox MA, Kastrup J, Hrubiško M. Historical perspectives and the future of adverse reactions associated with haemopoietic stem cells cryopreserved with dimethyl sulfoxide. Cell Tissue Bank. 2012;13(2):203–15.

    Article  CAS  PubMed  Google Scholar 

  12. Donmez A, Tombuloglu M, Gungor A, Soyer N, Saydam G, et al. Clinical side effects during peripheral blood progenitor cell infusion. Transfus Apher Sci. 2007;36(1):95–101.

    Article  PubMed  Google Scholar 

  13. Syme R, Bewick M, Stewart D, Porter K, Chadderton T, et al. The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity. Biol Blood Marrow Transplant. 2004;10(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  14. Hanslick JL, Lau K, Noguchi KK, Olney JW, Zorumski CF, et al. Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiol Dis. 2009;34(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aita K, Irie H, Tanuma Y, Toida S, Okuma Y, et al. Apoptosis in murine lymphoid organs following intraperitoneal administration of dimethyl sulfoxide (DMSO). Exp Mol Pathol. 2005;79(3):265–71.

    Article  CAS  PubMed  Google Scholar 

  16. Woods EJ, Pollok KE, Byers MA, Perry BC, Purtteman J, et al. Cord blood stem cell cryopreservation. Transfus Med Hemother. 2007;34(4):276–85.

    Article  Google Scholar 

  17. Limaye LS. Bone marrow cryopreservation: improved recovery due to bioantioxidant additives in the freezing solution. Stem Cells. 1997;15(5):353–8.

    Article  CAS  PubMed  Google Scholar 

  18. Seo JM, Sohn MY, Suh JS, Atala A, Yoo JJ, et al. Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Cryobiology. 2011;62(3):167–73.

    Article  CAS  PubMed  Google Scholar 

  19. Buchanan SS, Gross SA, Acker JP, Toner M, Carpenter JF, et al. Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev. 2004;13(3):295–305.

    Article  CAS  PubMed  Google Scholar 

  20. Rodrigues JP, Paraguassú-Braga FH, Carvalho L, Abdelhay E, Bouzas LF, et al. Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology. 2008;56(2):144–51.

    Article  CAS  PubMed  Google Scholar 

  21. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995;61(10):3592–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, et al. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol. 2002;40(7):871–98.

    Article  CAS  PubMed  Google Scholar 

  23. Jain NK, Roy I. Effect of trehalose on protein structure. Protein Sci. 2009;18(1):24–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Erdag G, Eroglu A, Morgan J, Toner M. Cryopreservation of fetal skin is improved by extracellular trehalose. Cryobiology. 2002;44(3):218–28.

    Article  CAS  PubMed  Google Scholar 

  25. Beattie GM, Crowe JH, Lopez AD, Cirulli V, Ricordi C, et al. Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes. 1997;46(3):519–23.

    Article  CAS  PubMed  Google Scholar 

  26. Limaye LS, Kale VP. Cryopreservation of human hematopoietic cells with membrane stabilizers and bioantioxidants as additives in the conventional freezing medium. J Hematother Stem Cell Res. 2001;10(5):709–18.

    Article  CAS  PubMed  Google Scholar 

  27. Stolzing A, Naaldijk Y, Fedorova V, Sethe S. Hydroxyethylstarch in cryopreservation - mechanisms, benefits and problems. Transfus Apher Sci. 2012;46(2):137–47.

    Article  CAS  PubMed  Google Scholar 

  28. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med. 1996;335(3):157–66.

    Article  CAS  PubMed  Google Scholar 

  29. Jones DR, Bui TH, Anderson EM, Ek S, Liu D, et al. In utero haematopoietic stem cell transplantation: current perspectives and future potential. Bone Marrow Transplant. 1996;18(5):831–7.

    CAS  PubMed  Google Scholar 

  30. Bui TH, Jones DR. Stem cell transplantation into the fetal recipient: challenges and prospects. Curr Opin Obstet Gynecol. 1998;10(2):105–8.

    Article  CAS  PubMed  Google Scholar 

  31. Golfier F, Barcena A, Harrison MR, Muench MO. Fetal bone marrow as a source of stem cells for in utero or postnatal transplantation. Br J Haematol. 2000;109(1):173–81.

    Article  CAS  PubMed  Google Scholar 

  32. Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells. 2014;6(2):195–202.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bongso A, Fong CY. The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Rev. 2013;9(2):226–40.

    Article  CAS  PubMed  Google Scholar 

  34. Ma L, Feng XY, Cui BL, Law F, Jiang XW, et al. Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J (Engl). 2005;118(23):1987–93.

    CAS  Google Scholar 

  35. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, et al. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells. 2003;21(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang YN, Lie PC, Wei X. Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy. 2009;11(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Q, Ren H, Li X, Chen Z, Zhang X, et al. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy. 2009;11(4):414–26.

    Article  CAS  PubMed  Google Scholar 

  38. Wu LF, Wang NN, Liu YS, Wei X. Differentiation of Wharton’s jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng Part A. 2009;15(10):2865–73.

    Article  CAS  PubMed  Google Scholar 

  39. Chen MY, Lie PC, Li ZL, Wei X. Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol. 2009;37(5):629–40.

    Article  CAS  PubMed  Google Scholar 

  40. Wei X, Peng G, Zheng S, Wu X. Differentiation of umbilical cord mesenchymal stem cells into steroidogenic cells in comparison to bone marrow mesenchymal stem cells. Cell Prolif. 2012;45(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  41. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259(2):150–6.

    Article  CAS  PubMed  Google Scholar 

  42. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91(8):1017–26.

    CAS  PubMed  Google Scholar 

  43. van de Ven C, Collins D, Bradley MB, Morris E, Cairo MS. The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp Hematol. 2007;35(12):1753–65.

    Article  PubMed  CAS  Google Scholar 

  44. Korbling M, Robinson S, Estrov Z, Champlin R, Shpall E. Umbilical cord blood-derived cells for tissue repair. Cytotherapy. 2005;7(3):258–61.

    Article  CAS  PubMed  Google Scholar 

  45. Lee MW, Choi J, Yang MS, Moon YJ, Park JS, et al. Mesenchymal stem cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun. 2004;320(1):273–8.

    Article  CAS  PubMed  Google Scholar 

  46. Lee MW, Yang MS, Park JS, Kim HC, Kim YJ, et al. Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood. Int J Hematol. 2005;81(2):126–30.

    Article  PubMed  Google Scholar 

  47. Barachini S, Trombi L, Danti S, D’Alessandro D, Battolla B, et al. Morpho-functional characterization of human mesenchymal stem cells from umbilical cord blood for potential uses in regenerative medicine. Stem Cells Dev. 2009;18(2):293–305.

    Article  PubMed  Google Scholar 

  48. Kedong S, Xiubo F, Tianqing L, Macedo HM, LiLi J, et al. Simultaneous expansion and harvest of hematopoietic stem cells and mesenchymal stem cells derived from umbilical cord blood. J Mater Sci Mater Med. 2010;21(12):3183–93.

    Article  PubMed  CAS  Google Scholar 

  49. Phuc PV, Nhung TH, Loan DT, Chung DC, Ngoc PK. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell Dev Biol Anim. 2011;47(1):54–63.

    Article  CAS  PubMed  Google Scholar 

  50. Kang XQ, Zang WJ, Bao LJ, Li DL, Xu XL, et al. Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int. 2006;30(7):569–75.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang HT, Cheng HY, Zhang L, Fan J, Chen YZ, et al. Umbilical cord blood cell-derived neurospheres differentiate into Schwann-like cells. Neuroreport. 2009;20(4):354–9.

    Article  CAS  PubMed  Google Scholar 

  52. Luo YC, Zhang HT, Cheng HY, Yang ZJ, Dai YW, et al. Differentiation of cryopreserved human umbilical cord blood-derived stromal cells into cells with an oligodendrocyte phenotype. In Vitro Cell Dev Biol Anim. 2010;46(7):585–9.

    Article  PubMed  Google Scholar 

  53. Huang GP, Pan ZJ, Jia BB, Zheng Q, Xie CG, et al. Ex vivo expansion and transplantation of hematopoietic stem/progenitor cells supported by mesenchymal stem cells from human umbilical cord blood. Cell Transplant. 2007;16(6):579–85.

    Article  CAS  PubMed  Google Scholar 

  54. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  CAS  PubMed  Google Scholar 

  55. Rebelatto CK, Aguiar AM, Moretao MP, Senegaglia AC, Hansen P, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood). 2008;233(7):901–13.

    Article  CAS  Google Scholar 

  56. Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, et al. Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol. 2009;90(2):261–9.

    Article  PubMed  Google Scholar 

  57. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98(8):2396–402.

    Article  CAS  PubMed  Google Scholar 

  58. In ‘t Anker PS, Noort WA, Scherjon SA, Kleijburg-van C, der Keur C, Kruisselbrink AB, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 2003;88(8):845–52.

    PubMed  Google Scholar 

  59. Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells. 2007;25(3):646–54.

    Article  CAS  PubMed  Google Scholar 

  60. Brady K, Dickinson SC, Guillot PV, Polak J, Blom AW, et al. Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis. Stem Cells Dev. 2014;23(5):541–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weber B, Zeisberger SM, Hoerstrup SP. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta. 2011;32(4):14.

    Google Scholar 

  62. Delo DM, De Coppi P, Bartsch Jr G, Atala A. Amniotic fluid and placental stem cells. Methods Enzymol. 2006;419:426–38.

    Article  CAS  PubMed  Google Scholar 

  63. Kaviani A, Guleserian K, Perry TE, Jennings RW, Ziegler MM, et al. Fetal tissue engineering from amniotic fluid. J Am Coll Surg. 2003;196(4):592–7.

    Article  PubMed  Google Scholar 

  64. Joo S, Ko IK, Atala A, Yoo JJ, Lee SJ. Amniotic fluid-derived stem cells in regenerative medicine research. Arch Pharm Res. 2012;35(2):271–80.

    Article  CAS  PubMed  Google Scholar 

  65. Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, et al. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg. 2007;42(6):974–9.

    Article  PubMed  Google Scholar 

  66. Hosper NA, Bank RA, van den Berg PP. Human Amniotic Fluid-Derived Mesenchymal Cells from Fetuses with a Neural Tube Defect Do Not Deposit Collagen Type I Protein After TGF-beta1 Stimulation In Vitro. Stem Cells Dev. 2014;23(5):555–62.

    Article  CAS  PubMed  Google Scholar 

  67. Di Bernardo J, Maiden MM, Hershenson MB, Kunisaki SM. Amniotic fluid derived mesenchymal stromal cells augment fetal lung growth in a nitrofen explant model. J Pediatr Surg. 2014;49(6):859–64.

    Article  PubMed  Google Scholar 

  68. Moschidou D, Mukherjee S, Blundell MP, Jones GN, Atala AJ, et al. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells Dev. 2013;22(3):444–58.

    Article  CAS  PubMed  Google Scholar 

  69. Roubelakis MG, Pappa KI, Bitsika V, Zagoura D, Vlahou A, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev. 2007;16(6):931–52.

    Article  CAS  PubMed  Google Scholar 

  70. Lai D, Wang F, Chen Y, Wang L, Wang Y, et al. Human amniotic fluid stem cells have a potential to recover ovarian function in mice with chemotherapy-induced sterility. BMC Dev Biol. 2013;13:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Yu X, Wang N, Qiang R, Wan Q, Qin M, et al. Human amniotic fluid stem cells possess the potential to differentiate into primordial follicle oocytes in vitro. Biol Reprod. 2014;90:73.

    Article  PubMed  CAS  Google Scholar 

  72. Kmiecik G, Niklinska W, Kuc P, Pancewicz-Wojtkiewicz J, Fil D, et al. Fetal membranes as a source of stem cells. Adv Med Sci. 2013;58(2):185–95.

    Article  CAS  PubMed  Google Scholar 

  73. Ilancheran S, Moodley Y, Manuelpillai U. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta. 2009;30(1):2–10.

    Article  CAS  PubMed  Google Scholar 

  74. Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):877–91.

    Article  PubMed  Google Scholar 

  75. Bacenkova D, Rosocha J, Tothova T, Rosocha L, Sarissky M. Isolation and basic characterization of human term amnion and chorion mesenchymal stromal cells. Cytotherapy. 2011;13(9):1047–56.

    Article  PubMed  CAS  Google Scholar 

  76. Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, et al. Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev. 2013;9(1):16–31.

    Article  CAS  PubMed  Google Scholar 

  77. Castrechini NM, Murthi P, Gude NM, Erwich JJ, Gronthos S, et al. Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta. 2010;31(3):203–12.

    Article  CAS  PubMed  Google Scholar 

  78. Castrechini NM, Murthi P, Qin S, Kusuma GD, Wilton L, et al. Decidua parietalis-derived mesenchymal stromal cells reside in a vascular niche within the choriodecidua. Reprod Sci. 2012;19(12):1302–14.

    Article  CAS  PubMed  Google Scholar 

  79. Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH. Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant. 2008;17(8):955–68.

    Article  PubMed  Google Scholar 

  80. Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation. 2004;78(10):1439–48.

    Article  PubMed  Google Scholar 

  81. Cargnoni A, Gibelli L, Tosini A, Signoroni PB, Nassuato C, et al. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant. 2009;18(4):405–22.

    Article  PubMed  Google Scholar 

  82. Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol. 2007;75(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Y, Li CD, Jiang XX, Li HL, Tang PH, et al. Comparison of mesenchymal stem cells from human placenta and bone marrow. Chin Med J (Engl). 2004;117(6):882–7.

    CAS  Google Scholar 

  84. Fazekasova H, Lechler R, Langford K, Lombardi G. Placenta-derived MSCs are partially immunogenic and less immunomodulatory than bone marrow-derived MSCs. J Tissue Eng Regen Med. 2011;5(9):684–94.

    Article  CAS  PubMed  Google Scholar 

  85. Li C, Zhang W, Jiang X, Mao N. Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res. 2007;330(3):437–46.

    Article  PubMed  Google Scholar 

  86. Li CD, Zhang WY, Li HL, Jiang XX, Zhang Y, et al. Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Res. 2005;15(7):539–47.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Y, Li C, Jiang X, Zhang S, Wu Y, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol. 2004;32(7):657–64.

    Article  CAS  PubMed  Google Scholar 

  88. Lee HJ, Jung J, Cho KJ, Lee CK, Hwang SG, et al. Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes. Differentiation. 2012;84(3):223–31.

    Article  CAS  PubMed  Google Scholar 

  89. Iwasaki R, Matsubara S, Takizawa T, Takayama T, Yashiro T, et al. Human amniotic epithelial cells are morphologically homogeneous: enzyme histochemical, tracer, and freeze-substitution fixation study. Eur J Histochem. 2003;47(3):223–32.

    Article  CAS  PubMed  Google Scholar 

  90. Diaz-Prado S, Muinos-Lopez E, Hermida-Gomez T, Rendal-Vazquez ME, Fuentes-Boquete I, et al. Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem. 2010;111(4):846–57.

    Article  CAS  PubMed  Google Scholar 

  91. Ochsenbein-Kolble N, Bilic G, Hall H, Huch R, Zimmermann R. Inducing proliferation of human amnion epithelial and mesenchymal cells for prospective engineering of membrane repair. J Perinat Med. 2003;31(4):287–94.

    PubMed  Google Scholar 

  92. Miki T, Marongiu F, Ellis EC, Dorko K, Mitamura K, et al. Production of hepatocyte-like cells from human amnion. Methods Mol Biol. 2009;481:155–68.

    Article  CAS  PubMed  Google Scholar 

  93. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, et al. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod. 2007;77(3):577–88.

    Article  CAS  PubMed  Google Scholar 

  94. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23(10):1549–59.

    Article  CAS  PubMed  Google Scholar 

  95. Pozzobon M, Piccoli M, De Coppi P. Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell Tissue Bank. 2014;15(2):199–211.

    CAS  PubMed  Google Scholar 

  96. Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci. 2005;46(3):900–7.

    Article  PubMed  Google Scholar 

  97. Zhao H-X, Li Y, Jin H-F, Xie L, Liu C, et al. Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation. 2010;80(2–3):123–9.

    Article  CAS  PubMed  Google Scholar 

  98. Hou Y, Huang Q, Liu T, Guo L. Human amnion epithelial cells can be induced to differentiate into functional insulin-producing cells. Acta Biochim Biophys Sin (Shanghai). 2008;40(9):830–9.

    Article  CAS  Google Scholar 

  99. Wang F, Wang L, Yao X, Lai D, Guo L. Human amniotic epithelial cells can differentiate into granulosa cells and restore folliculogenesis in a mouse model of chemotherapy-induced premature ovarian failure. Stem Cell Res Ther. 2013;4(5):124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Smagur A, Mitrus I, Giebel S, Sadus-Wojciechowska M, Najda J, et al. Impact of different dimethyl sulphoxide concentrations on cell recovery, viability and clonogenic potential of cryopreserved peripheral blood hematopoietic stem and progenitor cells. Vox Sang. 2013;104(3):240–7.

    Article  CAS  PubMed  Google Scholar 

  101. Mitrus I, Smagur A, Giebel S, Gliwinska J, Prokop M, et al. A faster reconstitution of hematopoiesis after autologous transplantation of hematopoietic cells cryopreserved in 7.5 % dimethyl sulfoxide if compared to 10 % dimethyl sulfoxide containing medium. Cryobiology. 2013;67(3):327–31.

    Article  CAS  PubMed  Google Scholar 

  102. Abrahamsen JF, Bakken AM, Bruserud O. Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+ cells. Transfusion. 2002;42(12):1573–80.

    Article  CAS  PubMed  Google Scholar 

  103. Galmes A, Besalduch J, Bargay J, Novo A, Morey M, et al. Long-term storage at -80 degrees C of hematopoietic progenitor cells with 5-percent dimethyl sulfoxide as the sole cryoprotectant. Transfusion. 1999;39(1):70–3.

    Article  CAS  PubMed  Google Scholar 

  104. Halle P, Tournilhac O, Knopinska-Posluszny W, Kanold J, Gembara P, et al. Uncontrolled-rate freezing and storage at -80 degrees C, with only 3.5-percent DMSO in cryoprotective solution for 109 autologous peripheral blood progenitor cell transplantations. Transfusion. 2001;41(5):667–73.

    Article  CAS  PubMed  Google Scholar 

  105. Son JH, Heo YJ, Park MY, Kim HH, Lee KS. Optimization of cryopreservation condition for hematopoietic stem cells from umbilical cord blood. Cryobiology. 2010;60(3):287–92.

    Article  CAS  PubMed  Google Scholar 

  106. Rowley SD, Anderson GL. Effect of DMSO exposure without cryopreservation on hematopoietic progenitor cells. Bone Marrow Transplant. 1993;11(5):389–93.

    CAS  PubMed  Google Scholar 

  107. Branch DR, Calderwood S, Cecutti MA, Herst R, Solh H. Hematopoietic progenitor cells are resistant to dimethyl sulfoxide toxicity. Transfusion. 1994;34(10):887–90.

    Article  CAS  PubMed  Google Scholar 

  108. Motta JPR, Gomes BE, Bouzas LF, Paraguassú-Braga FH, Porto LC. Evaluations of bioantioxidants in cryopreservation of umbilical cord blood using natural cryoprotectants and low concentrations of dimethylsulfoxide. Cryobiology. 2010;60(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  109. Sasnoor LM, Kale VP, Limaye LS. Supplementation of conventional freezing medium with a combination of catalase and trehalose results in better protection of surface molecules and functionality of hematopoietic cells. J Hematother Stem Cell Res. 2003;12(5):553–64.

    Article  CAS  PubMed  Google Scholar 

  110. Sasnoor LM, Kale VP, Limaye LS. A combination of catalase and trehalose as additives to conventional freezing medium results in improved cryoprotection of human hematopoietic cells with reference to in vitro migration and adhesion properties. Transfusion. 2005;45(4):622–33.

    Article  CAS  PubMed  Google Scholar 

  111. Meyer TP, Hofmann B, Zaisserer J, Jacobs VR, Fuchs B, et al. Analysis and cryopreservation of hematopoietic stem and progenitor cells from umbilical cord blood. Cytotherapy. 2006;8(3):265–76.

    Article  CAS  PubMed  Google Scholar 

  112. Hunt CJ, Armitage SE, Pegg DE. Cryopreservation of umbilical cord blood: 2. Tolerance of CD34+ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology. 2003;46(1):76–87.

    Article  CAS  PubMed  Google Scholar 

  113. Solves P, Mirabet V, Planelles D, Carbonell-Uberos F, Roig R. Influence of volume reduction and cryopreservation methodologies on quality of thawed umbilical cord blood units for transplantation. Cryobiology. 2008;56(2):152–8.

    Article  CAS  PubMed  Google Scholar 

  114. Naaldijk Y, Staude M, Fedorova V, Stolzing A. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnol. 2012;12:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Almici C, Carlo-Stella C, Wagner JE, Mangoni L, Garau D, et al. Clonogenic capacity and ex vivo expansion potential of umbilical cord blood progenitor cells are not impaired by cryopreservation. Bone Marrow Transplant. 1997;19(11):1079–84.

    Article  CAS  PubMed  Google Scholar 

  116. Guttridge MG, Soh TG, Belfield H, Sidders C, Watt SM. Storage time affects umbilical cord blood viability. Transfusion. 2014;54:1278.

    Article  CAS  PubMed  Google Scholar 

  117. Pereira-Cunha FG, Duarte AS, Costa FF, Saad ST, Lorand-Metze I, et al. Viability of umbilical cord blood mononuclear cell subsets until 96 hours after collection. Transfusion. 2013;53(9):2034–42.

    Article  CAS  PubMed  Google Scholar 

  118. Wang HY, Lun ZR, Lu SS. Cryopreservation of umbilical cord blood-derived mesenchymal stem cells without dimethyl sulfoxide. Cryo Letters. 2011;32(1):81–8.

    PubMed  Google Scholar 

  119. Balci D, Can A. The assessment of cryopreservation conditions for human umbilical cord stroma-derived mesenchymal stem cells towards a potential use for stem cell banking. Curr Stem Cell Res Ther. 2013;8(1):60–72.

    Article  CAS  PubMed  Google Scholar 

  120. Gong W, Han Z, Zhao H, Wang Y, Wang J, et al. Banking human umbilical cord-derived mesenchymal stromal cells for clinical use. Cell Transplant. 2012;21(1):207–16.

    Article  PubMed  Google Scholar 

  121. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26(2):300–11.

    Article  PubMed  Google Scholar 

  122. Thirumala S, Goebel WS, Woods EJ. Clinical grade adult stem cell banking. Organogenesis. 2009;5(3):143–54.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Thirumala S, Goebel WS, Woods EJ. Manufacturing and banking of mesenchymal stem cells. Expert Opin Biol Ther. 2013;13(5):673–91.

    Article  CAS  PubMed  Google Scholar 

  124. Miranda-Sayago JM, Fernandez-Arcas N, Benito C, Reyes-Engel A, Herrero JR, et al. Evaluation of a low cost cryopreservation system on the biology of human amniotic fluid-derived mesenchymal stromal cells. Cryobiology. 2012;64(3):160–6.

    Article  CAS  PubMed  Google Scholar 

  125. Cho HJ, Lee SH, Yoo JJ, Shon YH. Evaluation of cell viability and apoptosis in human amniotic fluid-derived stem cells with natural cryoprotectants. Cryobiology. 2014;68(2):244–50.

    Article  CAS  PubMed  Google Scholar 

  126. Heng BC, Clement MV, Cao T. Caspase inhibitor Z-VAD-FMK enhances the freeze-thaw survival rate of human embryonic stem cells. Biosci Rep. 2007;27(4-5):257–64.

    Article  CAS  PubMed  Google Scholar 

  127. Montolio M, Tellez N, Biarnes M, Soler J, Montanya E. Short-term culture with the caspase inhibitor z-VAD.fmk reduces beta cell apoptosis in transplanted islets and improves the metabolic outcome of the graft. Cell Transplant. 2005;14(1):59–65.

    Article  PubMed  Google Scholar 

  128. Nakano M, Matsumoto I, Sawada T, Ansite J, Oberbroeckling J, et al. Caspase-3 inhibitor prevents apoptosis of human islets immediately after isolation and improves islet graft function. Pancreas. 2004;29(2):104–9.

    Article  CAS  PubMed  Google Scholar 

  129. Janz Fde L, Debes Ade A, Cavaglieri Rde C, Duarte SA, Romao CM, et al. Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. J Biomed Biotechnol. 2012;2012:649353.

    PubMed  Google Scholar 

  130. Steigman SA, Armant M, Bayer-Zwirello L, Kao GS, Silberstein L, et al. Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. J Pediatr Surg. 2008;43(6):1164–9.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ng SC, Sathananthan H, Bongso A, Lee MN, Mok H, et al. The use of amniotic fluid and serum with propanediol in freezing of murine 2-cell embryos. Fertil Steril. 1988;50(3):510–3.

    CAS  PubMed  Google Scholar 

  132. Dorfmann AD, Bender SD, Robinson P, Fugger EF, Bustillo M, et al. Cell-free human amniotic fluid as culture medium for mouse and human embryos. Fertil Steril. 1989;51(4):671–4.

    CAS  PubMed  Google Scholar 

  133. Niknejad H, Deihim T, Peirovi H, Abolghasemi H. Serum-free cryopreservation of human amniotic epithelial cells before and after isolation from their natural scaffold. Cryobiology. 2013;67(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  134. Murphy S, Rosli S, Acharya R, Mathias L, Lim R et al. Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol 2010; Chapter 1: Unit 1E.6.

    Google Scholar 

  135. Zarzeczny A, Rachul C, Nisbet M, Caulfield T. Stem cell clinics in the news. Nat Biotechnol. 2010;28(12):1243–6. doi:10.1038/nbt1210-1243b.

    Article  CAS  PubMed  Google Scholar 

  136. Regenberg AC, Hutchinson LA, Schanker B, Mathews DJ. Medicine on the fringe: stem cell-based interventions in advance of evidence. Stem Cells. 2009;27(9):2312–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik J. Woods Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Albanna, M.Z., Woods, E.J. (2016). Fetal Stem Cell Banking. In: Fauza, D., Bani, M. (eds) Fetal Stem Cells in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3483-6_16

Download citation

Publish with us

Policies and ethics