Skip to main content

Wave Patterns in Cell Membrane and Actin Cortex Uncoupled from Chemotactic Signals

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1407))

Abstract

When cells of Dictyostelium discoideum orientate in a gradient of chemoattractant, they are polarized into a protruding front pointing toward the source of attractant, and into a retracting tail. Under the control of chemotactic signal inputs, Ras is activated and PIP3 is synthesized at the front, while the PIP3-degrading phosphatase PTEN decorates the tail region. As a result of signal transduction, actin filaments assemble at the front into dendritic structures associated with the Arp2/3 complex, in contrast to the tail region where a loose actin meshwork is associated with myosin-II and cortexillin, an antiparallel actin-bundling protein. In axenically growing strains of D. discoideum, wave patterns built by the same components evolve in the absence of any external signal input. Since these autonomously generated patterns are constrained to the plane of the substrate-attached cell surface, they are optimally suited to the optical analysis of state transitions between front-like and tail-like states of the membrane and the actin cortex. Here, we describe imaging techniques using fluorescent proteins to probe for the state of the membrane, the reorganization of the actin network, and the dynamics of wave patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Y, Chen CL, Iijima M (2011) Signaling mechanisms for chemotaxis. Dev Growth Differ 53:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jin T (2013) Gradient sensing during chemotaxis. Curr Opin Cell Biol 25:532–537

    Article  CAS  PubMed  Google Scholar 

  3. Gerisch G, Ecke M, Wischnewski D, Schroth-Diez B (2011) Different modes of state transitions determine pattern in the phosphatidylinositide-actin system. BMC Cell Biol 12:42–57

    Google Scholar 

  4. Schroth-Diez B, Gerwig S, Ecke M et al (2009) Propagating waves separate two states of actin organization in living cells. HFSP J 3:412–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerisch G, Schroth-Diez B, Müller-Taubenberger A, Ecke M (2012) PIP3 waves and PTEN dynamics in the emergence of cell polarity. Biophys J 103:1170–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bretschneider T, Anderson K, Ecke M et al (2009) The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization. Biophys J 96:2888–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bretschneider T, Diez S, Anderson K et al (2004) Dynamic actin patterns and Arp2/3 assembly at the substrate-attached surface of motile cells. Curr Biol 14:1–10

    Article  CAS  PubMed  Google Scholar 

  8. Taniguchi D, Ishihara S, Oonuki T et al (2013) Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells. Proc Natl Acad Sci U S A 110:5016–5021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerisch G, Bretschneider T, Müller-Taubenberger A et al (2004) Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophys J 87:3493–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dormann D, Weijer G, Dowler S, Weijer CJ (2004) In vivo analysis of 3-phosphoinositide dynamics during Dictyostelium phagocytosis and chemotaxis. J Cell Sci 117:6497–6509

    Article  CAS  PubMed  Google Scholar 

  11. Loovers HM, Postma M, Keizer-Gunnink I et al (2006) Distinct roles of PI(3,4,5)P3 during chemoattractant signaling in Dictyostelium: a quantitative in vivo analysis by inhibition of PI3-kinase. Mol Biol Cell 17:1503–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gerhardt M, Ecke M, Walz M et al (2014) Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state. J Cell Sci 127:4507–4517

    Article  CAS  PubMed  Google Scholar 

  13. Häder DP, Claviez M, Merkl R, Gerisch G (1983) Responses of Dictyostelium discoideum amoebae to local stimulation by light. Cell Biol Int Rep 7:611–616

    Article  PubMed  Google Scholar 

  14. Heinrich D, Youssef S, Schroth-Diez B et al (2008) Actin-cytoskeleton dynamics in non-monotonic cell spreading. Cell Adh Migr 2:58–68

    Article  PubMed  PubMed Central  Google Scholar 

  15. Diez S, Gerisch G, Anderson K et al (2005) Subsecond reorganization of the actin network in cell motility and chemotaxis. Proc Natl Acad Sci U S A 102:7601–7606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kae H, Lim CJ, Spiegelman GB, Weeks G (2004) Chemoattractant-induced Ras activation during Dictyostelium aggregation. EMBO Rep 5:602–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sasaki AT, Chun C, Takeda K, Firtel RA (2004) Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol 167:505–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Charest PG, Firtel RA (2007) Big roles for small GTPases in the control of directed cell movement. Biochem J 401:377–390

    Article  CAS  PubMed  Google Scholar 

  19. Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284:765–770

    Article  CAS  PubMed  Google Scholar 

  20. Parent CA (2004) Making all the right moves: chemotaxis in neutrophils and Dictyostelium. Curr Opin Cell Biol 16:4–13

    Article  CAS  PubMed  Google Scholar 

  21. Arai Y, Shibata T, Matsuoka S et al (2010) Self-organization of the phosphatidylinositol lipids signaling system for random cell migration. Proc Natl Acad Sci U S A 107:12399–12404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shibata T, Nishikawa M, Matsuoka S, Ueda M (2012) Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis. J Cell Sci 125:5138–5150

    Article  CAS  PubMed  Google Scholar 

  23. Gerisch G, Ecke M, Schroth-Diez B et al (2009) Self-organizing actin waves as planar phagocytic cup structures. Cell Adh Migr 3:373–382

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoeller O, Kay RR (2007) Chemotaxis in the absence of PIP3 gradients. Curr Biol 17:813–817

    Article  CAS  PubMed  Google Scholar 

  25. Lusche DF, Wessels D, Richardson NA et al (2014) PTEN redundancy: overexpressing lpten, a homolog of Dictyostelium discoideum ptenA, the ortholog of human PTEN, rescues all behavioral defects of the mutant ptenA-. PLoS One 9:e108495

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pédelacq JD, Cabantous S, Tran T et al (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    Article  PubMed  Google Scholar 

  27. Müller-Taubenberger A, Ishikawa-Ankerhold HC (2013) Fluorescent reporters and methods to analyze fluorescent signals. Methods Mol Biol 983:93–112

    Article  PubMed  Google Scholar 

  28. Vazquez F, Matsuoka S, Sellers WR et al (2006) Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proc Natl Acad Sci U S A 103:3633–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iijima M, Devreotes P (2002) Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109:599–610

    Article  CAS  PubMed  Google Scholar 

  30. Funamoto S, Meili R, Lee S et al (2002) Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109:611–623

    Article  CAS  PubMed  Google Scholar 

  31. Vazquez F, Devreotes P (2006) Regulation of PTEN function as a PIP3 gatekeeper through membrane interaction. Cell Cycle 5:1523–1527

    Article  CAS  PubMed  Google Scholar 

  32. Iijima M, Huang YE, Luo HR et al (2004) Novel mechanism of PTEN regulation by its phosphatidylinositol 4,5-bisphosphate binding motif is critical for chemotaxis. J Biol Chem 279:16606–16613

    Article  CAS  PubMed  Google Scholar 

  33. Westphal M, Jungbluth A, Heidecker M et al (1997) Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr Biol 7:176–183

    Article  CAS  PubMed  Google Scholar 

  34. Schneider N, Weber I, Faix J et al (2003) A Lim protein involved in the progression of cytokinesis and regulation of the mitotic spindle. Cell Motil Cytoskeleton 56:130–139

    Article  CAS  PubMed  Google Scholar 

  35. Brzeska H, Guag J, Preston GM et al (2012) Molecular basis of dynamic relocalization of Dictyostelium myosin IB. J Biol Chem 287:14923–14936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brzeska H, Pridham K, Chery G et al (2014) The association of myosin IB with actin waves in Dictyostelium requires both the plasma membrane-binding site and actin-binding region in the myosin tail. PLoS One 9:e94306

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mullins RD, Pollard TD (1999) Structure and function of the Arp2/3 complex. Curr Opin Struct Biol 9:244–249

    Article  CAS  PubMed  Google Scholar 

  38. Appleton BA, Wu P, Wiesmann C (2006) The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes. Structure 14:87–96

    Article  CAS  PubMed  Google Scholar 

  39. Bretschneider T, Jonkman J, Köhler J et al (2002) Dynamic organization of the actin system in the motile cells of Dictyostelium. J Muscle Res Cell Motil 23:639–649

    Article  CAS  PubMed  Google Scholar 

  40. Maniak M, Rauchenberger R, Albrecht R et al (1995) Coronin involved in phagocytosis: dynamics of particle-induced relocalization visualized by a green fluorescent protein Tag. Cell 83:915–924

    Article  CAS  PubMed  Google Scholar 

  41. Clarke M, Maddera L (2006) Phagocyte meets prey: uptake, internalization, and killing of bacteria by Dictyostelium amoebae. Eur J Cell Biol 85:1001–1010

    Article  CAS  PubMed  Google Scholar 

  42. Aizawa H, Sameshima M, Yahara I (1997) A green fluorescent protein-actin fusion protein dominantly inhibits cytokinesis, cell spreading, and locomotion in Dictyostelium. Cell Struct Funct 22:335–345

    Article  CAS  PubMed  Google Scholar 

  43. Liu T, Mirschberger C, Chooback L et al (2002) Altered expression of the 100 kDa subunit of the Dictyostelium vacuolar proton pump impairs enzyme assembly, endocytic function and cytosolic pH regulation. J Cell Sci 115:1907–1918

    CAS  PubMed  Google Scholar 

  44. Gingell D, Todd I, Bailey J (1985) Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers. J Cell Biol 100:1334–1338

    Article  CAS  PubMed  Google Scholar 

  45. Gerisch G, Ecke M, Neujahr R et al (2013) Membrane and actin reorganization in electropulse-induced cell fusion. J Cell Sci 126:2069–2078

    Article  CAS  PubMed  Google Scholar 

  46. Fischer M, Haase I, Simmeth E et al (2004) A brilliant monomeric red fluorescent protein to visualize cytoskeleton dynamics in Dictyostelium. FEBS Lett 577:227–232

    Article  CAS  PubMed  Google Scholar 

  47. Fey P, Dodson RJ, Basu S, Chisholm RL (2013) One stop shop for everything Dictyostelium: dictyBase and the Dicty Stock Center in 2012. Methods Mol Biol 983:59–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  49. Pang KM, Lee E, Knecht DA (1998) Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures. Curr Biol 8:405–408

    Article  CAS  PubMed  Google Scholar 

  50. Lemieux MG, Janzen D, Hwang R et al (2014) Visualization of the actin cytoskeleton: different F-actin-binding probes tell different stories. Cytoskeleton (Hoboken) 71:157–169

    Article  CAS  Google Scholar 

  51. Riedl J, Crevenna AH, Kessenbrock K et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heinrich D, Ecke M, Jasnin M et al (2014) Reversible membrane pearling in live cells upon destruction of the actin cortex. Biophys J 106:1079–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Annette Müller-Taubenberger, LMU München, for PTEN -sf-GFP and are grateful for funds of the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Gerisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gerisch, G., Ecke, M. (2016). Wave Patterns in Cell Membrane and Actin Cortex Uncoupled from Chemotactic Signals. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology, vol 1407. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3480-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3480-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3478-2

  • Online ISBN: 978-1-4939-3480-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics