Skip to main content

Axon Guidance Studies Using a Microfluidics-Based Chemotropic Gradient Generator

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1407))

Abstract

Microfluidics can be used to generate flow-driven gradients of chemotropic guidance cues with precisely controlled steepnesses for indefinite lengths of time. Neuronal cells grown in the presence of these gradients can be studied for their response to the effects exerted by the cues. Here we describe a polydimethylsiloxane (PDMS) microfluidics chamber capable of producing linear gradients of soluble factors, stable for at least 18 h, suitable for axon guidance studies. Using this device we demonstrate turning of superior cervical ganglion axons by gradients of nerve growth factor (NGF). The chamber produces robust gradients, is inexpensive to mass produce, can be mounted on a tissue culture dish or glass coverslip for long term time-lapse microscopy imaging, and is suitable for immunostaining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Engle EC (2010) Human genetic disorders of axon guidance. Cold Spring Harb Perspect Biol 2:a001784

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tessier-Lavigne M, Placzek M, Lumsden AG et al (1988) Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 336:775–778

    Article  CAS  PubMed  Google Scholar 

  3. Rosoff WJ, Urbach JS, Esrick MA et al (2004) A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat Neurosci 7:678–682

    Article  CAS  PubMed  Google Scholar 

  4. Pujic Z, Giacomantonio CE, Unni D et al (2008) Analysis of the growth cone turning assay for studying axon guidance. J Neurosci Methods 170:220–228

    Article  PubMed  Google Scholar 

  5. Lohof AM, Quillan M, Dan Y, Poo MM (1992) Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J Neurosci 12:1253–1261

    CAS  PubMed  Google Scholar 

  6. Yam PT, Langlois SD, Morin S, Charron F (2009) Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron 62:349–362

    Article  CAS  PubMed  Google Scholar 

  7. Dupin I, Dahan M, Studer V (2013) Investigating axonal guidance with microdevice-based approaches. J Neurosci 33:17647–17655

    Article  CAS  PubMed  Google Scholar 

  8. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  PubMed  Google Scholar 

  9. Kothapalli CR, van Veen E, de Valence S et al (2011) A high-throughput microfluidic assay to study neurite response to growth factor gradients. Lab Chip 11:497–507

    Article  CAS  PubMed  Google Scholar 

  10. Wang JC, Li X, Lin B et al (2008) A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab Chip 8:227–237

    Article  CAS  Google Scholar 

  11. Morel M, Shynkar V, Galas JC et al (2012) Amplification and temporal filtering during gradient sensing by nerve growth cones probed with a microfluidic assay. Biophys J 103:1648–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu H, Koo LY, Wang WM et al (2004) Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem 76:5257–5264

    Article  CAS  PubMed  Google Scholar 

  13. Day MA (1990) The no-slip condition of fluid dynamics. Erkenntnis 33:285–296

    Article  Google Scholar 

  14. Bhattacharjee N, Li N, Keenan TM, Folch A (2010) A neuron-benign microfluidic gradient generator for studying the response of mammalian neurons towards axon guidance factors. Integr Biol (Camb) 2:669–679

    Article  CAS  Google Scholar 

  15. Campbell K, Groisman A (2007) Generation of complex concentration profiles in microchannels in a logarithmically small number of steps. Lab Chip 7:264–272

    Article  CAS  PubMed  Google Scholar 

  16. Mortimer D, Feldner J, Vaughan T et al (2009) Bayesian model predicts the response of axons to molecular gradients. Proc Natl Acad Sci U S A 106:10296–10301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jiajia Yuan for help with an earlier version of the microfluidics chamber . We gratefully acknowledge support from the NHMRC (project grant 1083707). This work was performed in part at the Queensland node of the Australian National Fabrication Facility (ANFF), a company established under the National Collaborative Research Infrastructure Strategy to provide nanofabrication and microfabrication facilities for Australia’s researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey J. Goodhill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pujic, Z., Nguyen, H., Glass, N., Cooper-White, J., Goodhill, G.J. (2016). Axon Guidance Studies Using a Microfluidics-Based Chemotropic Gradient Generator. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology, vol 1407. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3480-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3480-5_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3478-2

  • Online ISBN: 978-1-4939-3480-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics