Skip to main content

Dendritic Elaboration: Morphology and Chemistry

  • Reference work entry
  • First Online:
Neuroscience in the 21st Century

Abstract

Dendrites (from Greek δένδρον déndron, “tree”) are one of the major structural elements of neurons and exhibit enormously diverse forms. They receive, integrate and process thousands of excitatory, and to a lesser extent inhibitory, synaptic inputs terminating either on the dendritic shaft or spine. The morphology and size of dendrites critically determines the mode of connectivity between neurons with dendritic trees ramifying in characteristic spatial domains where they receive specific synaptic inputs. Therefore, dendrites play a critical role in the integration of these inputs and in determining the extent of action potential generation.

Furthermore, the structure and branching of dendrites together with the availability and variation in voltage-gated ion conductances strongly influences how synaptic inputs within a given microcircuit are integrated. This integration is both temporal – involving the summation of signals as well as spatial – entailing the aggregation of excitatory and inhibitory inputs from individual branches. Dendrites were thought to convey electrical signals passively. However, as shown recently dendrites can activly support action potentials and release neurotransmitters, a property that was originally believed to be specific to axons.

Voltage changes at the soma result from activation of distal synapses propagating to the soma without the aid of voltage-gated ion channels. Based on the passive cable theory one can measure how changes in dendritic morphology lead to changes of the membrane voltage, and thus how variation in dendrite architectures affects the overall output characteristics of the neuron. In this context it is also important to know that the membrane of dendrites contain ensembles of various proteins that may contribute to amplify or attenuate synaptic inputs. Sodium, calcium, and potassium channels are all implicated to affect input modulation. Each of these ions has a family of channel types with its own biophysical characteristics relevant to synaptic input modulation thereby controlling the latency of channel opening, the electrical conductance of the ion pore, the activation voltage and duration. This could lead to an amplification of even weak inputs from distal synapses by sodium and calcium currents. One important feature of dendrites, endowed by their active voltage gated conductances, is their ability to propagate action potentials back into the dendritic tree. Known as “backpropagating action potentials,” these signals depolarize the dendritic tree, a mechanism that contributes to synaptic modulation and long- and short-term potentiation and plasticity.

Abnormalities in dendritic structural plasticity are a characteristic feature of many mental, neurological and neurodegenerative brain disorders. Changes in synaptic function or neuronal circuitry associated with disease produce severe structural changes in dendritic length and branching, dramatic loss of spines accompanied also by changes in spine morphology. Thus, pathologies in dendritic structure are followed by remodeling of dendritic and synaptic circuits and changes in learning, memory and mind of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3(Suppl):1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Adams MM, Shah RA, Janssen WG, Morrison JH (2001) Different modes of hippocampal plasticity in response to estrogen in young and aged female rats. Proc Natl Acad Sci U S A 98:8071–8076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman J, Bayer S (1997) Development of the cerebellar system in relation to its evolution, structure, and functions. CRC Press, Boca Raton

    Google Scholar 

  • Ascher P, Nowak L (1988) The role of divalent cations in the N-methyl-d-aspartate responses of mouse central neurones in culture. J Physiol 399:247–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrionuevo G, Brown TH (1983) Associative long-term potentiation in hippocampal slices. Proc Natl Acad Sci U S A 80:7347–7351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baude A, Nusser Z, Molnar E, McIlhinney RA, Somogyi P (1995) High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 69:1031–1055

    Article  CAS  PubMed  Google Scholar 

  • Bear MF, Kirkwood A (1993) Neocortical long-term potentiation. Curr Opin Neurobiol 3:197–202

    Article  CAS  PubMed  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399

    Article  CAS  PubMed  Google Scholar 

  • Beltran-Campos V, Prado-Alcala RA, Leon-Jacinto U, Aguilar-Vazquez A, Quirarte GL, Ramirez-Amaya V, Diaz-Cintra S (2011) Increase of mushroom spine density in CA1 apical dendrites produced by water maze training is prevented by ovariectomy. Brain Res 1369:119–130

    Article  CAS  PubMed  Google Scholar 

  • Bergles DE, Dzubay JA, Jahr CE (1997) Glutamate transporter currents in Bergmann glial cells follow the time course of extrasynaptic glutamate. Proc Natl Acad Sci U S A 94:14821–14825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard C, Shah M, Johnston D (2008) Dendrites and disease, Chapter 20. In: Stuart G et al (eds) Dendrites, 2nd edn. Oxford University Press, New York, pp 531–554

    Google Scholar 

  • Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V, Uranova N, Greenough WT (2004) Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 161:742–744

    Article  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, LomØ T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boda B, Dubos A, Muller D (2010) Signaling mechanisms regulating synapse formation and function in mental retardation. Curr Opin Neurobiol 20:519–527

    Article  CAS  PubMed  Google Scholar 

  • Böhm D, Schwegler H, Kotthaus L, Nayernia K, Rickmann M, Kohler M, Rosenbusch J, Engel W, Flügge G, Burfeind P (2002) Disruption of PLC-beta 1-mediated signal transduction in mutant mice causes age-dependent hippocampal mossy fiber sprouting and neurodegeneration. Mol Cell Neurosci 21:584–601

    Article  PubMed  Google Scholar 

  • Borges S, Berry M (1976) Preferential orientation of stellate cell dendrites in the visual cortex of the dark-reared rat. Brain Res 112:141–147

    Article  CAS  PubMed  Google Scholar 

  • Borges S, Berry M (1978) The effects of dark rearing on the development of the visual cortex of the rat. J Comp Neurol 180:277–300

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster PS, Dudek FE (1999) In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 81:712–721

    CAS  PubMed  Google Scholar 

  • Buzsáki G, Penttonen M, Nadasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc Natl Acad Sci U S A 93:9921–9925

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang FL, Greenough WT (1984) Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice. Brain Res 309:35–46

    Article  CAS  PubMed  Google Scholar 

  • Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, Armstrong DL, Percy AK, Pozzo-Miller L (2009) Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 35:219–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YJ, Johnson MA, Lieberman MD, Goodchild RE, Schobel S, Lewandowski N, Rosoklija G, Liu RC, Gingrich JA, Small S, Moore H, Dwork AJ, Talmage DA, Role LW (2008) Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci 28:6872–6883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chicurel ME, Harris KM (1992) Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J Comp Neurol 325:169–182

    Article  CAS  PubMed  Google Scholar 

  • Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431:782–788

    Article  CAS  PubMed  Google Scholar 

  • Colino A, Huang YY, Malenka RC (1992) Characterization of the integration time for the stabilization of long-term potentiation in area CA1 of the hippocampus. J Neurosci 12:180–187

    CAS  PubMed  Google Scholar 

  • Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287

    Article  CAS  PubMed  Google Scholar 

  • Connor JR Jr, Diamond MC, Johnson RE (1980) Aging and environmental influences on two types of dendritic spines in the rat occipital cortex. Exp Neurol 70:371–379

    Article  PubMed  Google Scholar 

  • Cooney JR, Hurlburt JL, Selig DK, Harris KM, Fiala JC (2002) Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. J Neurosci 22:2215–2224

    CAS  PubMed  Google Scholar 

  • Cruz-Martin A, Crespo M, Portera-Cailliau C (2010) Delayed stabilization of dendritic spines in fragile X mice. J Neurosci 30:7793–7803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dailey ME, Smith SJ (1996) The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16:2983–2994

    CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Davies CH, Collingridge GL (1996) Regulation of EPSPs by the synaptic activation of GABAB autoreceptors in rat hippocampus. J Physiol 496(Pt 2):451–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debanne D, Gahwiler BH, Thompson SM (1994) Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proc Natl Acad Sci U S A 91:1148–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debanne D, Gahwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFelipe J, Farinas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563–607

    Article  CAS  PubMed  Google Scholar 

  • Deller T, Korte M, Chabanis S, Drakew A, Schwegler H, Stefani GG, Zuniga A, Schwarz K, Bonhoeffer T, Zeller R, Frotscher M, Mundel P (2003) Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proc Natl Acad Sci U S A 100:10494–10499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmond NL, Levy WB (1983) Synaptic correlates of associative potentiation/depression: an ultrastructural study in the hippocampus. Brain Res 265:21–30

    Article  CAS  PubMed  Google Scholar 

  • Diamond MC, Lindner B, Johnson R, Bennett EL, Rosenzweig MR (1975) Differences in occipital cortical synapses from environmentally enriched, impoverished, and standard colony rats. J Neurosci Res 1:109–119

    Article  CAS  PubMed  Google Scholar 

  • Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL (2008) The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 17:111–118

    Article  CAS  PubMed  Google Scholar 

  • Dölen G, Osterweil E, Shankaranarayana Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of fragile X syndrome in mice. Neuron 56:955–962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R (1999) Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci U S A 96:13438–13443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunaevsky A, Blazeski R, Yuste R, Mason C (2001) Spine motility with synaptic contact. Nat Neurosci 4:685–686

    Article  CAS  PubMed  Google Scholar 

  • Duneavsky A, Woolley CS (2008) Structural plasticity of dendrites, Chapter 19. In: Stuart G et al (eds) Dendrites, 2nd edn. Oxford University Press, New York, pp 499–530

    Google Scholar 

  • Eberhard JP, Wanner A, Wittum G (2006) NeuGen: A tool for the generation of realistic morphology of cortical neurons and neural networks in 3D. Neurocomputing 70(1–3):327–342

    Article  Google Scholar 

  • Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Ellias SA, Stevens JK (1980) The dendritic varicosity: a mechanism for electrically isolating the dendrites of cat retinal amacrine cells? Brain Res 196:365–372

    Article  CAS  PubMed  Google Scholar 

  • Emptage NJ (1999) Calcium on the up: supralinear calcium signaling in central neurons. Neuron 24:495–497

    Article  CAS  PubMed  Google Scholar 

  • Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70

    Article  CAS  PubMed  Google Scholar 

  • Eyre MD, Richter-Levin G, Avital A, Stewart MG (2003) Morphological changes in hippocampal dentate gyrus synapses following spatial learning in rats are transient. Eur J Neurosci 17:1973–1980

    Article  PubMed  Google Scholar 

  • Falke E, Nissanov J, Mitchell TW, Bennett DA, Trojanowski JQ, Arnold SE (2003) Subicular dendritic arborization in Alzheimer’s disease correlates with neurofibrillary tangle density. Am J Pathol 163:1615–1621

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldman ML (1984) Morphology oft he neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 123–200

    Google Scholar 

  • Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC, Feinberg M, Popov V, Harris KM (1998) Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci 18:8900–8911

    CAS  PubMed  Google Scholar 

  • Fiala JC, Allwardt B, Harris KM (2002a) Dendritic spines do not split during hippocampal LTP or maturation. Nat Neurosci 5:297–298

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC, Spacek J, Harris KM (2002b) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev 39:29–54

    Article  PubMed  Google Scholar 

  • Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, Harris KM (2003) Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 465:90–103

    Article  PubMed  Google Scholar 

  • Fiala JC, Spacek J, Harris KM (2008) Dendritc structure, Chapter 1. In: Stuart G et al (eds) Dendrites, 2nd edn. Oxford University Press, New York, pp 1–41

    Google Scholar 

  • Fifková E (1985a) Actin in the nervous system. Brain Res 356:187–215

    Article  PubMed  Google Scholar 

  • Fifková E (1985b) A possible mechanism of morphometric changes in dendritic spines induced by stimulation. Cell Mol Neurobiol 5:47–63

    Article  PubMed  Google Scholar 

  • Fifková E, Anderson CL (1981) Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp Neurol 74:621–627

    Article  PubMed  Google Scholar 

  • Fifková E, Van Harreveld A (1977) Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J Neurocytol 6:211–230

    Article  PubMed  Google Scholar 

  • Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20:847–854

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434:221–225

    Article  CAS  PubMed  Google Scholar 

  • Garcia O, Torres M, Helguera P, Coskun P, Busciglio J (2010) A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome. PLoS One 5, e14200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Segura LM, Baetens D, Naftolin F (1986) Synaptic remodelling in arcuate nucleus after injection of estradiol valerate in adult female rats. Brain Res 366:131–136

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Segura LM, Chowen JA, Parducz A, Naftolin F (1994) Gonadal hormones as promoters of structural synaptic plasticity: cellular mechanisms. Prog Neurobiol 44:279–307

    Article  CAS  PubMed  Google Scholar 

  • Geinisman Y, deToledo-Morrell L, Morrell F (1991) Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res 566:77–88

    Article  CAS  PubMed  Google Scholar 

  • Globus A, Scheibel AB (1967) The effect of visual deprivation on cortical neurons: a Golgi study. Exp Neurol 19:331–345

    Article  CAS  PubMed  Google Scholar 

  • Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183:1592–1593

    Article  CAS  PubMed  Google Scholar 

  • Green EJ, Greenough WT, Schlumpf BE (1983) Effects of complex or isolated environments on cortical dendrites of middle-aged rats. Brain Res 264:233–240

    Article  CAS  PubMed  Google Scholar 

  • Greenough WT, Larson JR, Withers GS (1985) Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behav Neural Biol 44:301–314

    Article  CAS  PubMed  Google Scholar 

  • Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    Article  CAS  PubMed  Google Scholar 

  • Halpain S, Hipolito A, Saffer L (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci 18:9835–9844

    CAS  PubMed  Google Scholar 

  • Hamlyn LH (1962) The fine structure of the mossy fiber endings in the hippocampus of the rabbit. J Anat 96:112–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao J, Rapp PR, Leffler AE, Leffler SR, Janssen WG, Lou W, McKay H, Roberts JA, Wearne SL, Hof PR, Morrison JH (2006) Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys. J Neurosci 26:2571–2578

    Article  CAS  PubMed  Google Scholar 

  • Harris KM, Stevens JK (1988) Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 8:4455–4469

    CAS  PubMed  Google Scholar 

  • Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705

    CAS  PubMed  Google Scholar 

  • Harris KM, Fiala JC, Ostroff L (2003) Structural changes at dendritic spine synapses during long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358:745–748

    Article  PubMed  PubMed Central  Google Scholar 

  • Häusser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19:665–678

    Article  PubMed  Google Scholar 

  • Häusser M, Roth A (1997) Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. J Neurosci 17:7606–7625

    PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behaviour. Wiley, New York

    Google Scholar 

  • Helmstaedter M, Sakmann B, Feldmeyer D (2009a) L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. Cereb Cortex 19:951–962

    Google Scholar 

  • Helmstaedter M, Sakmann B, Feldmeyer D (2009b) The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex. Cereb Cortex 19:938–950

    Google Scholar 

  • Hirano A (1981) A guide to neuropathology. Igaku Shoin, New York/Tokyo

    Google Scholar 

  • Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa T, Rusakov DA, Bliss TV, Fine A (1995) Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J Neurosci 15:5560–5573

    CAS  PubMed  Google Scholar 

  • Hutsler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94

    Article  CAS  PubMed  Google Scholar 

  • Johnston D, Williams S, Jaffe D, Gray R (1992) NMDA-receptor-independent long-term potentiation. Annu Rev Physiol 54:489–505

    Article  CAS  PubMed  Google Scholar 

  • Kampa BM, Clements J, Jonas P, Stuart GJ (2004) Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J Physiol 556:337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasper EM, Lübke J, Larkman AU, Blakemore C (1994) Pyramidal neurons in layer 5 of the rat visual cortex. III. Differential maturation of axon targeting, dendritic morphology, and electrophysiological properties. J Comp Neurol 339:495–518

    Article  CAS  PubMed  Google Scholar 

  • Kelso SR, Ganong AH, Brown TH (1986) Hebbian synapses in hippocampus. Proc Natl Acad Sci U S A 83:5326–5330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharazia VN, Weinberg RJ (1999) Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat. J Comp Neurol 412:292–302

    Article  CAS  PubMed  Google Scholar 

  • Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT (1996) Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 16:4529–4535

    CAS  PubMed  Google Scholar 

  • Kleim JA, Swain RA, Czerlanis CM, Kelly JL, Pipitone MA, Greenough WT (1997) Learning-dependent dendritic hypertrophy of cerebellar stellate cells: plasticity of local circuit neurons. Neurobiol Learn Mem 67:29–33

    Article  CAS  PubMed  Google Scholar 

  • Knott GW, Holtmaat A, Wilbrecht L, Welker E, Svoboda K (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 9:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Koester SE, O’Leary DD (1992) Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern. J Neurosci 12:1382–1393

    CAS  PubMed  Google Scholar 

  • Koester HJ, Sakmann B (1998) Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci U S A 95:9596–9601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollo M, Holderith NB, Nusser Z (2006) Novel subcellular distribution pattern of A-type K+ channels on neuronal surface. J Neurosci 26:2684–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konur S, Yuste R (2004a) Imaging the motility of dendritic protrusions and axon terminals: roles in axon sampling and synaptic competition. Mol Cell Neurosci 27:427–440

    Article  CAS  PubMed  Google Scholar 

  • Konur S, Yuste R (2004b) Developmental regulation of spine and filopodial motility in primary visual cortex: reduced effects of activity and sensory deprivation. J Neurobiol 59:236–246

    Article  PubMed  Google Scholar 

  • Korkotian E, Segal M (2001) Regulation of dendritic spine motility in cultured hippocampal neurons. J Neurosci 21:6115–6124

    CAS  PubMed  Google Scholar 

  • Lang C, Barco A, Zablow L, Kandel ER, Siegelbaum SA, Zakharenko SS (2004) Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc Natl Acad Sci U S A 101:16665–16670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langub MC Jr, Maley BE, Watson RE Jr (1994) Estrous cycle-associated axosomatic synaptic plasticity upon estrogen receptive neurons in the rat preoptic area. Brain Res 641:303–310

    Article  CAS  PubMed  Google Scholar 

  • Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J Comp Neurol 306:332–343

    Article  CAS  PubMed  Google Scholar 

  • Larkman A, Mason A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes. J Neurosci 10:1407–1414

    CAS  PubMed  Google Scholar 

  • Larkum ME, Waters J, Sakmann B, Helmchen F (2007) Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. J Neurosci 27:8999–9008

    Article  CAS  PubMed  Google Scholar 

  • Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756–760

    Article  CAS  PubMed  Google Scholar 

  • Lee WC, Huang H, Feng G, Sanes JR, Brown EN, So PT, Nedivi E (2006) Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PLoS Biol 4, e29

    Article  PubMed  CAS  Google Scholar 

  • Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404:876–881

    Article  CAS  PubMed  Google Scholar 

  • Leranth C, Shanabrough M, Horvath TL (2000) Hormonal regulation of hippocampal spine synapse density involves subcortical mediation. Neuroscience 101:349–356

    Article  CAS  PubMed  Google Scholar 

  • Leranth C, Shanabrough M, Redmond DE Jr (2002) Gonadal hormones are responsible for maintaining the integrity of spine synapses in the CA1 hippocampal subfield of female nonhuman primates. J Comp Neurol 447:34–42

    Article  CAS  PubMed  Google Scholar 

  • Leung LS (2009) Kindling, long-term potentiation and spatial memory performance. Can J Neurol Sci 36(Suppl 2):S36–S38

    PubMed  Google Scholar 

  • Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8:791–797

    Article  CAS  PubMed  Google Scholar 

  • Lordkipanidze T, Dunaevsky A (2005) Purkinje cell dendrites grow in alignment with Bergmann glia. Glia 51:229–234

    Article  PubMed  Google Scholar 

  • Lujan R, Shigemoto R, Lopez-Bendito G (2005) Glutamate and GABA receptor signalling in the developing brain. Neuroscience 130:567–580

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri G, Tóth K, McBain CJ (1998) Target-specific expression of presynaptic mossy fiber plasticity. Science 279:1368–1370

    Article  CAS  PubMed  Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522

    Article  CAS  PubMed  Google Scholar 

  • Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624

    CAS  PubMed  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213

    Article  CAS  PubMed  Google Scholar 

  • Mainen ZF, Abott LF (2008) Functional plasticity at dendritic synapses, Chapter 18. In: Stuart G et al (eds) Dendrites, 2nd edn. Oxford University Press, New York, pp 465–498

    Google Scholar 

  • Mainen ZF, Malinow R, Svoboda K (1999) Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399:151–155

    Article  CAS  PubMed  Google Scholar 

  • Majewska A, Sur M (2003) Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation. Proc Natl Acad Sci U S A 100:16024–16029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malenka RC, Kauer JA, Zucker RS, Nicoll RA (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242:81–84

    Article  CAS  PubMed  Google Scholar 

  • Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283:1923–1927

    Article  CAS  PubMed  Google Scholar 

  • Malinow R, Miller JP (1986) Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature 320:529–530

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL, Derrick BE (1996) Long-term potentiation and learning. Annu Rev Psychol 47:173–203

    Article  PubMed  Google Scholar 

  • Mason A, Larkman A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. J Neurosci 10:1415–1428

    CAS  PubMed  Google Scholar 

  • Matsumoto A, Arai Y (1979) Synaptogenic effect of estrogen on the hypothalamic arcuate nucleus of the adult female rat. Cell Tissue Res 198:427–433

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBain CJ, Mayer ML (1994) N-methyl-d-aspartic acid receptor structure and function. Physiol Rev 74:723–760

    CAS  PubMed  Google Scholar 

  • McNaughton BL, Douglas RM, Goddard GV (1978) Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 157:277–293

    Article  CAS  PubMed  Google Scholar 

  • Mehta MR (2004) Cooperative LTP can map memory sequences on dendritic branches. Trends Neurosci 27:69–72

    Article  CAS  PubMed  Google Scholar 

  • Mel BW (1993) Synaptic integration in an excitable dendritic tree. J Neurophysiol 70:1086–1101

    CAS  PubMed  Google Scholar 

  • Mel BW (1994) Information processing in dendritic trees. Neural Comput 6:1031–1085

    Article  Google Scholar 

  • Meredith RM, Mansvelder HD (2010) STDP and mental retardation: dysregulation of dendritic excitability in fragile X syndrome. Front Synaptic Neurosci 2:10

    PubMed  PubMed Central  Google Scholar 

  • Mizrahi A, Katz LC (2003) Dendritic stability in the adult olfactory bulb. Nat Neurosci 6:1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Morris RG, Hagan JJ, Rawlins JN (1986) Allocentric spatial learning by hippocampectomised rats: a further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q J Exp Psychol B 38:365–395

    CAS  PubMed  Google Scholar 

  • Murphy DD, Cole NB, Greenberger V, Segal M (1998) Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J Neurosci 18:2550–2559

    CAS  PubMed  Google Scholar 

  • Nägerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44:759–767

    Article  PubMed  Google Scholar 

  • Nevian T, Sakmann B (2004) Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex. J Neurosci 24:1689–1699

    Article  CAS  PubMed  Google Scholar 

  • Nicoll RA, Malenka RC (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377:115–118

    Article  CAS  PubMed  Google Scholar 

  • Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fiber synapses. Nat Rev Neurosci 6:863–876

    Article  CAS  PubMed  Google Scholar 

  • Niell CM, Smith SJ (2004) Live optical imaging of nervous system development. Annu Rev Physiol 66:771–798

    Article  CAS  PubMed  Google Scholar 

  • Niell CM, Meyer MP, Smith SJ (2004) In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci 7:254–260

    Article  CAS  PubMed  Google Scholar 

  • Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–354

    Article  CAS  PubMed  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Article  CAS  PubMed  Google Scholar 

  • Nusser Z (2000) AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Curr Opin Neurobiol 10:337–341

    Article  CAS  PubMed  Google Scholar 

  • O’Malley A, O’Connell C, Murphy KJ, Regan CM (2000) Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent. Neuroscience 99:229–232

    Article  PubMed  Google Scholar 

  • Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112

    Article  CAS  PubMed  Google Scholar 

  • Olmos G, Naftolin F, Perez J, Tranque PA, Garcia-Segura LM (1989) Synaptic remodeling in the rat arcuate nucleus during the estrous cycle. Neuroscience 32:663–667

    Article  CAS  PubMed  Google Scholar 

  • Oray S, Majewska A, Sur M (2004) Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 44:1021–1030

    Article  CAS  PubMed  Google Scholar 

  • Ostroff LE, Fiala JC, Allwardt B, Harris KM (2002) Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35:535–545

    Article  CAS  PubMed  Google Scholar 

  • Overly CC, Rieff HI, Hollenbeck PJ (1996) Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci 109:971–980

    CAS  PubMed  Google Scholar 

  • Pacelli GJ, Su W, Kelso SR (1989) Activity-induced depression of synaptic inhibition during LTP-inducing patterned stimulation. Brain Res 486:26–32

    Article  CAS  PubMed  Google Scholar 

  • Pare D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J Neurophysiol 79:1450–1460

    CAS  PubMed  Google Scholar 

  • Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters A, Kaiserman-Abramof IR (1970) The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat 127:321–355

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Palay SL, Webster H, De F (1991) The fine structure of the nervous system. Oxford University Press, New York

    Google Scholar 

  • Pfeiffer BE, Huber KM (2007) Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation. J Neurosci 27:3120–3130

    Article  CAS  PubMed  Google Scholar 

  • Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627

    Article  CAS  PubMed  Google Scholar 

  • Portera-Cailliau C, Pan DT, Yuste R (2003) Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci 23:7129–7142

    CAS  PubMed  Google Scholar 

  • Prieto JJ, Winer JA (1999) Layer VI in cat primary auditory cortex: Golgi study and sublaminar origins of projection neurons. J Comp Neurol 404:332–358

    Article  CAS  PubMed  Google Scholar 

  • Raastad M, Enriquez-Denton M, Kiehn O (1998) Synaptic signaling in an active central network only moderately changes passive membrane properties. Proc Natl Acad Sci U S A 95:10251–10256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramón y Cajal S (1995) Histology of the nervous system of man and vertebrates (trans: Swanson N, Swanson LW). Oxford University Press, New York (originally published: Histology du système nerveux de l’homme et des vèrtebrès (trans: Azoulay L). Paris, pp 1909–1911

    Google Scholar 

  • Ribak CE, Tran PH, Spigelman I, Okazaki MM, Nadler JV (2000) Status epilepticus-induced hilar basal dendrites on rodent granule cells contribute to recurrent excitatory circuitry. J Comp Neurol 428:240–253

    Article  CAS  PubMed  Google Scholar 

  • Rollenhagen A, Sätzler K, Rodriguez EP, Jonas P, Frotscher M, Lübke JHR (2007) Structural determinants of transmission at large hippocampal mossy fiber synapses. J Neurosci 27:10434–10444

    Article  CAS  PubMed  Google Scholar 

  • Rudick CN, Woolley CS (2001) Estrogen regulates functional inhibition of hippocampal CA1 pyramidal cells in the adult female rat. J Neurosci 21:6532–6543

    CAS  PubMed  Google Scholar 

  • Rudick CN, Woolley CS (2003) Selective estrogen receptor modulators regulate phasic activation of hippocampal CA1 pyramidal cells by estrogen. Endocrinology 144:179–187

    Article  CAS  PubMed  Google Scholar 

  • Ruigrok TJ, de Zeeuw CI, van der Burg J, Voogd J (1990) Intracellular labeling of neurons in the medial accessory olive of the cat: I. Physiology and light microscopy. J Comp Neurol 300:462–477

    Article  CAS  PubMed  Google Scholar 

  • Salin PA, Scanziani M, Malenka RC, Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc Natl Acad Sci U S A 93:13304–13309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24:1029–1046

    Article  CAS  PubMed  Google Scholar 

  • Schiller J, Schiller Y, Clapham DE (1998) NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat Neurosci 1:114–118

    Article  CAS  PubMed  Google Scholar 

  • Segal M, Vlachos A, Korkotian E (2010) The spine apparatus, synaptopodin, and dendritic spine plasticity. Neuroscientist 16:125–131

    Article  CAS  PubMed  Google Scholar 

  • Selig DK, Lee HK, Bear MF, Malenka RC (1995) Reexamination of the effects of MCPG on hippocampal LTP, LTD, and depotentiation. J Neurophysiol 74:1075–1082

    CAS  PubMed  Google Scholar 

  • Sholl DA (1956) The measurable parameters of the cerebral cortex and their significance in its organization. Prog Neurobiol 2:324–333

    Google Scholar 

  • Sjöström PJ, Häusser M (2006) A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227–238

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562:9–26

    Article  CAS  PubMed  Google Scholar 

  • Sorra KE, Harris KM (1998) Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J Neurosci 18:658–671

    CAS  PubMed  Google Scholar 

  • Spacek J (1985) Three-dimensional analysis of dendritic spines. II. Spine apparatus and other cytoplasmic components. Anat Embryol 171:235–243

    Article  CAS  PubMed  Google Scholar 

  • Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17:190–203

    CAS  PubMed  Google Scholar 

  • Spruston N, Schiller Y, Stuart G, Sakmann B (1995a) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300

    Article  CAS  PubMed  Google Scholar 

  • Spruston N, Jonas P, Sakmann B (1995b) Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J Physiol 482:325–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens CF (1998) A million dollar question: does LTP = memory? Neuron 20:1–2

    Article  CAS  PubMed  Google Scholar 

  • Steward O, Reeves TM (1988) Protein-synthetic machinery beneath postsynaptic sites on CNS neurons: association between polyribosomes and other organelles at the synaptic site. J Neurosci 8:176–184

    CAS  PubMed  Google Scholar 

  • Stuart GJ, Häusser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4:63–71

    Article  CAS  PubMed  Google Scholar 

  • Stuart G, Spruston N, Sakmann B, Häusser M (1997a) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20:125–131

    Article  CAS  PubMed  Google Scholar 

  • Stuart G, Schiller J, Sakmann B (1997b) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505:617–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart G, Spruston N, Häusser M (2008) Dendrites, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272:716–719

    Article  CAS  PubMed  Google Scholar 

  • Takumi Y, Matsubara A, Rinvik E, Ottersen OP (1999) The arrangement of glutamate receptors in excitatory synapses. Ann N Y Acad Sci 868:474–482

    Article  CAS  PubMed  Google Scholar 

  • Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421–425

    Article  CAS  PubMed  Google Scholar 

  • Tóth K, Suares G, Lawrence JJ, Philips-Tansey E, McBain CJ (2000) Differential mechanisms of transmission at three types of mossy fiber synapse. J Neurosci 20:8279–8289

    PubMed  Google Scholar 

  • Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    Article  CAS  PubMed  Google Scholar 

  • Trimmer JS, Rhodes KJ (2004) Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66:477–519

    Article  CAS  PubMed  Google Scholar 

  • Trommald M, Hulleberg G (1997) Dimensions and density of dendritic spines from rat dentate granule cells based on reconstructions from serial electron micrographs. J Comp Neurol 377:15–28

    Article  CAS  PubMed  Google Scholar 

  • Trommald M, Hulleberg G, Andersen P (1996) Long-term potentiation is associated with new excitatory spine synapses on rat dentate granule cells. Learn Mem 3:218–228

    Article  CAS  PubMed  Google Scholar 

  • Tsubokawa H, Ross WN (1996) IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. J Neurophysiol 76:2896–2906

    CAS  PubMed  Google Scholar 

  • Turrigiano GG, Nelson SB (1998) Thinking globally, acting locally: AMPA receptor turnover and synaptic strength. Neuron 21:933–935

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896

    Article  CAS  PubMed  Google Scholar 

  • Umeda T, Ebihara T, Okabe S (2005) Simultaneous observation of stably associated presynaptic varicosities and postsynaptic spines: morphological alterations of CA3-CA1 synapses in hippocampal slice cultures. Mol Cell Neurosci 28:264–274

    Article  CAS  PubMed  Google Scholar 

  • Uylings HB, Kuypers K, Diamond MC, Veltman WA (1978) Effects of differential environments on plasticity of dendrites of cortical pyramidal neurons in adult rats. Exp Neurol 62:658–677

    Article  CAS  PubMed  Google Scholar 

  • Valverde F (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3:337–352

    Article  CAS  PubMed  Google Scholar 

  • Van Harreveld A, Fifková E (1975) Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp Neurol 49:736–749

    Article  PubMed  Google Scholar 

  • Van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10:207–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906

    CAS  PubMed  Google Scholar 

  • Wallace W, Bear MF (2004) A morphological correlate of synaptic scaling in visual cortex. J Neurosci 24:6928–6938

    Article  CAS  PubMed  Google Scholar 

  • Witkin JW, Ferin M, Popilskis SJ, Silverman AJ (1991) Effects of gonadal steroids on the ultrastructure of GnRH neurons in the rhesus monkey: synaptic input and glial apposition. Endocrinology 129:1083–1092

    Article  CAS  PubMed  Google Scholar 

  • Wolf S (2011) Erzeugung von hippocampalen Neuronen und Netzwerken der CA1-Region innerhalb des Softwaretools NeuGen. Master thesis, Ruperto-Carola-University Heidelberg

    Google Scholar 

  • Wolf S, Queisser G (submitted) Employing NeuGen 2.0 to automatically generate realistic morphologies of hippocampal neurons and neural networks in 3D

    Google Scholar 

  • Woolley CS, Cohen RS (2002) Sex steroids and neuronal growth in adulthood. In: Pfaff DW, Arnold A, Etgen A, Fahrbach S, Rubin R (eds) Hormones, brain and behavior, vol 4. Academic, San Diego, pp 717–777

    Chapter  Google Scholar 

  • Woolley CS, McEwen BS (1993) Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol 336:293–306

    Article  CAS  PubMed  Google Scholar 

  • Woolley CS, Wenzel HJ, Schwartzkroin PA (1996) Estradiol increases the frequency of multiple synapse boutons in the hippocampal CA1 region of the adult female rat. J Comp Neurol 373:108–117

    Article  CAS  PubMed  Google Scholar 

  • Xu-Friedman MA, Regehr WG (2003) Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. J Neurosci 23:2182–2192

    CAS  PubMed  Google Scholar 

  • Xu-Friedman MA, Harris KM, Regehr WG (2001) Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 21:6666–6672

    CAS  PubMed  Google Scholar 

  • Yankova M, Hart SA, Woolley CS (2001) Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells: a serial electron-microscopic study. Proc Natl Acad Sci U S A 98:3525–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuste R, Majewska A, Cash SS, Denk W (1999) Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci 19:1976–1987

    CAS  PubMed  Google Scholar 

  • Yuste R (2010) Dendritic spines. MIT Press, Cambridge. ISBN 978-0-262-01350-5

    Book  Google Scholar 

  • Yuste R, Majewska A, Holthoff K (2000) From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci 3:653–659

    Article  CAS  PubMed  Google Scholar 

  • Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395:37–44

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757

    Article  CAS  PubMed  Google Scholar 

  • Zito K, Knott G, Shepherd GM, Shenolikar S, Svoboda K (2004) Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron 44:321–334

    Article  CAS  PubMed  Google Scholar 

  • Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91–102

    Article  CAS  PubMed  Google Scholar 

  • Zukin RS, Bennett MV (1995) Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci 18:306–313

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim H. R. Lübke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Rollenhagen, A., Lübke, J.H.R. (2016). Dendritic Elaboration: Morphology and Chemistry. In: Pfaff, D., Volkow, N. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3474-4_11

Download citation

Publish with us

Policies and ethics