Skip to main content

Circadian Regulation of Sleep

  • Chapter
  • First Online:
Circadian Clocks: Role in Health and Disease

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1883 Accesses

Abstract

Both the circadian rhythm that runs biological processes time dependently on a 24-h cycle and the homeostatic mechanism that secures sleep as a measure against fatigue during wakefulness are involved in maintaining a regular sleep–wake cycle. Although the regulatory mechanism of sleep and wakefulness was discussed only conceptually in the early years, the neurophysiological and molecular biological bases underlying sleep and wakefulness have been rapidly elucidated in recent years. The promotion of sleep and maintenance of wakefulness are driven by distinct groups of nerve nuclei that form a negative feedback loop, or a flip-flop circuit, with nerve projections that reciprocally activate and deactivate each other. In addition, the 24-h cycle of sleep and wakefulness is governed by these nuclei due to the neuronal or hormonal input from the suprachiasmatic nucleus, the biological clock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MN, McGinty D, Szymusiak R (1996) Preoptic/anterior hypothalamic neurons: thermosensitivity in wakefulness and non rapid eye movement sleep. Brain Res 718(1–2):76–82

    Article  CAS  PubMed  Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1(3):195–204

    CAS  PubMed  Google Scholar 

  • Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23(33):10691–10702

    CAS  PubMed  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451

    Article  CAS  PubMed  Google Scholar 

  • Czeisler CA, Weitzman ED, M-EM C, Zimmerman JC, Knauer RS (1980a) Human sleep: its duration and organization depend on its circadian phase. Science 210(4475):1264–1267

    Article  CAS  PubMed  Google Scholar 

  • Czeisler CA, Zimmerman JC, Ronda JM, Moore-Ede EC, Weitzman ED (1980b) Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep 2(3):329–346

    CAS  PubMed  Google Scholar 

  • Daan S, Beersma DG, Borbely AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246(2 Pt 2):R161–R183

    CAS  PubMed  Google Scholar 

  • Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130(1):165–183

    Article  CAS  PubMed  Google Scholar 

  • Echizenya M, Mishima K, Satoh K, Kusanagi H, Sekine A, Ohkubo T, Shimizu T, Hishikawa Y (2003) Heat loss, sleepiness, and impaired performance after diazepam administration in humans. Neuropsychopharmacology 28(6):1198–1206

    CAS  PubMed  Google Scholar 

  • Echizenya M, Mishima K, Satoh K, Kusanagi H, Sekine A, Ohkubo T, Shimizu T, Hishikawa Y (2004) Enhanced heat loss and age-related hypersensitivity to diazepam. J Clin Psychopharmacol 24(6):639–646

    Article  CAS  PubMed  Google Scholar 

  • Edgar DM, Dement WC, Fuller CA (1993) Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci 13(3):1065–1079

    CAS  PubMed  Google Scholar 

  • Gilbert SS, van den Heuvel CJ, Dawson D (1999) Daytime melatonin and temazepam in young adult humans: equivalent effects on sleep latency and body temperatures. J Physiol 514:905–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glotzbach SF, Heller HC (1976) Central nervous regulation of body temperature during sleep. Science 194(4264):537–539

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Szymusiak R, King J, Steininger T, McGinty D (2000) Sleep-related c-Fos protein expression in the preoptic hypothalamus: effects of ambient warming. Am J Physiol Regul Integr Comp Physiol 279(6):R2079–R2088

    CAS  PubMed  Google Scholar 

  • Guzman-Marin R, Alam MN, Szymusiak R, Drucker-Colin R, Gong H, McGinty D (2000) Discharge modulation of rat dorsal raphe neurons during sleep and waking: effects of preoptic/basal forebrain warming. Brain Res 875(1–2):23–34

    Article  CAS  PubMed  Google Scholar 

  • Haimov I, Laudon M, Zisapel N, Souroujon M, Nof D, Shlitner A, Herer P, Tzischinsky O, Lavie P (1994) Sleep disorders and melatonin rhythms in elderly people. BMJ 309(6948):167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hida A, Kitamura S, Katayose Y et al (2014) Screening of clock gene polymorphisms demonstrates association of a PER3 polymorphism with morningness-eveningness preference and circadian rhythm sleep disorder. Sci Rep 4:6309. doi:10.1038/srep06309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horne JA, Shackell BS (1987) Slow wave sleep elevations after body heating: proximity to sleep and effects of aspirin. Sleep 10(4):383–392

    CAS  PubMed  Google Scholar 

  • Horne JA, Staff LH (1983) Exercise and sleep: body-heating effects. Sleep 6:36–46

    CAS  PubMed  Google Scholar 

  • Kim TW, Jeong JH, Hong SC (2015) The impact of sleep and circadian disturbance on hormones and metabolism. Int J Endocrinol 2015:591729. doi:10.1155/2015/591729

    PubMed Central  PubMed  Google Scholar 

  • Krauchi K, Cajochen C, Werth E, Wirz-Justice A (1999) Warm feet promote the rapid onset of sleep. Nature 401(6748):36–37

    Article  CAS  PubMed  Google Scholar 

  • Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28(4):395–409

    PubMed  Google Scholar 

  • Lavie P (1986) Ultrashort sleep-waking schedule. III. ‘Gates’ and ‘forbidden zones’ for sleep. Electroencephalogr Clin Neurophysiol 63(5):414–425

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper CB (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci 21(13):4864–4874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Machado RM, Koike MK (2014) Circadian rhythm, sleep pattern, and metabolic consequences: an overview on cardiovascular risk factors. Horm Mol Biol Clin Investig 18(1):47–52. doi:10.1515/hmbci-2013-0057

    CAS  PubMed  Google Scholar 

  • McGinty D, Szymusiak R (1990) Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep. Trends Neurosci 13(12):480–487

    Article  CAS  PubMed  Google Scholar 

  • Mishima K, Okawa M, Hozumi S, Hishikawa Y (2000) Supplementary administration of artificial bright light and melatonin as potent treatment for disorganized circadian rest-activity, and dysfunctional autonomic and neuroendocrine systems in institutionalized demented elderly persons. Chronobiol Int 17:419–432

    Article  CAS  PubMed  Google Scholar 

  • Mishima K, Okawa M, Shimizu T, Hishikawa Y (2001) Diminished melatonin secretion in the elderly caused by insufficient environmental illumination. J Clin Endocrinol Metab 86(1):129–134

    CAS  PubMed  Google Scholar 

  • Morris CJ, Aeschbach D, Scheer FA (2012) Circadian system, sleep and endocrinology. Mol Cell Endocrinol 349(1):91–104. doi:10.1016/j.mce.2011.09.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nohara K, Yoo SH, Chen ZJ (2015) Manipulating the circadian and sleep cycles to protect against metabolic disease. Front Endocrinol 6:35. doi:10.3389/fendo.2015.00035

    Article  Google Scholar 

  • Pache M, Krauchi K, Cajochen C, Wirz Justice A, Dubler B, Flammer J, Kaiser HJ (2001) Cold feet and prolonged sleep-onset latency in vasospastic syndrome. Lancet 358(9276):125–126

    Article  CAS  PubMed  Google Scholar 

  • Parmeggiani PL (1985) Homeostatic regulation during sleep: facts and hypothesis. In: McGinty DJ, Drucker-Colin R, Morrison A, Parmeggiani PL (eds) Brain mechanism of sleep. Raven, New York, pp 385–397

    Google Scholar 

  • Ramesh V, Kumar VM, John J, Mallick H (1995) Medial preoptic alpha-2 adrenoceptors in the regulation of sleep-wakefulness. Physiol Behav 57(1):171–175

    Article  CAS  PubMed  Google Scholar 

  • Richardson GS (2005) The human circadian system in normal and disordered sleep. J Clin Psychiatry 66(Suppl 9):3–9

    PubMed  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24(12):726–731

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68(6):1023–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28(3):152–157

    Article  CAS  PubMed  Google Scholar 

  • Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271(5246):216–219

    Article  CAS  PubMed  Google Scholar 

  • Szymusiak R (1995) Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation. Sleep 18(6):478–500

    CAS  PubMed  Google Scholar 

  • Thompson RH, Canteras NS, Swanson LW (1996) Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol 376(1):143–173

    Article  CAS  PubMed  Google Scholar 

  • Van Someren EJ, Raymann RJ, Scherder EJ, Daanen HA, Swaab DF (2002) Circadian and age-related modulation of thermoreception and temperature regulation: mechanisms and functional implications. Ageing Res Rev 1(4):721–778

    Article  PubMed  Google Scholar 

  • Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, von Schantz M, Dijk DJ (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 7:7

    Google Scholar 

  • Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258(2):204–229

    Article  CAS  PubMed  Google Scholar 

  • Wever RA (1979) The circadian system of man: results of experiments under temporal isolation. Springer, New York

    Book  Google Scholar 

  • Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, Edgar DM, Franken P (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3(20):20

    Article  PubMed Central  PubMed  Google Scholar 

  • Zepelin H, Rechtschaffen A (1974) Mammalian sleep, longevity, and energy metabolism. Brain Behav Evol 10(6):425–470

    Article  CAS  PubMed  Google Scholar 

  • Zulley J, Wever R, Aschoff J (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch 391(4):314–318

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Mishima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Mishima, K. (2016). Circadian Regulation of Sleep. In: Gumz, M. (eds) Circadian Clocks: Role in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3450-8_3

Download citation

Publish with us

Policies and ethics