Skip to main content

Chronotherapy of Blood Pressure Medications to Improve Management of Hypertension and Reduce Vascular Risk

  • Chapter
  • First Online:
Circadian Clocks: Role in Health and Disease

Abstract

Correlation between blood pressure (BP) and target organ damage, cardiovascular disease (CVD) risk, and long-term prognosis is greater for ambulatory BP monitoring (ABPM) than daytime in-clinic measurements. Additionally, consistent evidence from numerous studies substantiates that ABPM-determined asleep BP mean is an independent and stronger predictor of CVD risk than the awake or 24 h means. Hence, cost-effective adequate control of sleep-time BP is of marked clinical relevance. Ingestion time, according to circadian rhythms, of hypertension medications of six different classes and their combinations significantly impacts the beneficial and/or adverse effects of these drugs. For example, because the high-amplitude circadian rhythm of the renin-angiotensin-aldosterone system activates during nighttime sleep, bedtime versus morning ingestion of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ARB) better controls the asleep BP mean, with additional benefit, independent of medication terminal half-life, of converting the 24 h BP profile into more normal dipper patterning. The MAPEC Study, first prospective randomized treatment-time investigation testing the worthiness of bedtime chronotherapy with ≥1 conventional hypertension medications to specifically target attenuation of asleep BP, demonstrated, relative to conventional morning therapy, significantly better reduction of CVD risk: adjusted hazard ratio (HR) of total CVD events (HR = 0.39, 95 %CI [0.29–0.51]; P < 0.001) and major CVD events, i.e., CVD deaths, myocardial infarctions, and ischemic and hemorrhagic strokes (HR = 0.33 [0.19–0.55]; P < 0.001). CVD risk reduction was strongest when bedtime treatment included an ARB. The MAPEC Study documents that the asleep BP mean is the most significant prognostic marker of CVD and stroke morbidity and mortality. Moreover, the MAPEC study also substantiates attenuation of the asleep BP mean by a bedtime hypertension treatment strategy since the entire daily dose of ≥1 hypertension medications significantly reduces CVD risk, both in the general hypertension population and in patients of greater vulnerability and enhanced CVD risk, i.e., those diagnosed with chronic kidney disease, diabetes, and resistant hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R, Andersen MJ (2005) Correlates of systolic hypertension in patients with chronic kidney disease. Hypertension 46:514–520

    Article  PubMed  CAS  Google Scholar 

  • Agarwal R, Nissenson AR, Battle D, Coyne DW, Trout JR, Warnock DG (2003) Prevalence, treatment, and control of hypertension in chronic hemodialysis patients in the United States. Am J Med 115:291–297

    Article  PubMed  Google Scholar 

  • Almirall J, Comas L, Martínez-Ocaña JC, Roca S, Arnau A (2012) Effects of chronotherapy on blood pressure control in non-dipper patients with refractory hypertension. Nephrol Dial Transplant 27:1855–1859

    Article  PubMed  CAS  Google Scholar 

  • American Diabetes Association (2012) Standards of medical care in diabetes—2012. Diabetes Care 35(Suppl 1):S11–S63

    Google Scholar 

  • Angeli A, Gatti G, Masera R (1992) Chronobiology of the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone systems. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin, pp 292–314

    Chapter  Google Scholar 

  • Astrup AS, Nielsen FS, Rossing P et al (2007) Predictors of mortality in patients with type 2 diabetes with or without diabetic nephropathy: a follow-up study. J Hypertens 25:2479–2485

    Article  PubMed  CAS  Google Scholar 

  • Ayala DE, Hermida RC, Mojón A, Fernández JR (2013a) Cardiovascular risk of resistant hypertension: dependence on treatment-time regimen of blood pressure-lowering medications. Chronobiol Int 30:340–352

    Article  PubMed  CAS  Google Scholar 

  • Ayala DE, Moyá A, Crespo JJ et al (2013b) Circadian pattern of ambulatory blood pressure in hypertensive patients with and without type 2 diabetes. Chronobiol Int 30:99–115

    Article  PubMed  Google Scholar 

  • Balan H, Popescu E, Angelescu G (2011) Comparing different treatment schedules of Zomen (zofenopril). Rom J Intern Med 49:75–84

    PubMed  CAS  Google Scholar 

  • Bartter FC, Chan JCM, Simpson HW (1979) Chronobiological aspect of plasma renin activity, plasma aldosterone and urinary electrolytes. In: Krieger DT (ed) Endocrine rhythms. Raven, New York, pp 49–132

    Google Scholar 

  • Bélanger PM, Bruguerolle B, Labrecque G (1997) Rhythms in pharmacokinetics: absorption, distribution, metabolism. In: Redfern PH, Lemmer B (eds) Physiology and pharmacology of biological rhythms, vol 125, Handbook of experimental pharmacology series. Springer, Berlin, pp 177–204

    Chapter  Google Scholar 

  • Ben-Dov IZ, Kark JD, Ben-Ishay D, Mekler J, Ben-Arie L, Bursztyn M (2007) Predictors of all-cause mortality in clinical ambulatory monitoring. Unique aspects of blood pressure during sleep. Hypertension 49:1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Black HR, Elliott WJ, Grandits G et al (2003) Principal results of the controlled onset verapamil investigation of cardiovascular end points (CONVINCE) trial. JAMA 289:2073–2082

    Article  PubMed  CAS  Google Scholar 

  • Boggia J, Li Y, Thijs L et al (2007) Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet 370:1219–1229

    Article  PubMed  Google Scholar 

  • Bouhanick B, Bongard V, Amar J, Bousquel S, Chamontin B (2008) Prognostic value of nocturnal blood pressure and reverse-dipping status on the occurrence of cardiovascular events in hypertensive diabetic patients. Diabetes Metab 34:560–567

    Article  PubMed  CAS  Google Scholar 

  • Brotman DJ, Davidson MB, Boumitri M, Vidt DG (2008) Impaired diurnal blood pressure variation and all-cause mortality. Am J Hypertens 21:92–97

    Article  PubMed  Google Scholar 

  • Bruguerolle B, Lemmer B (1993) Recent advances in chronopharmacokinetics: methodological problems. Life Sci 52:1809–1824

    Article  PubMed  CAS  Google Scholar 

  • Calhoun DA, Jones D, Textor S et al (2008) Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 51:1403–1419

    Article  PubMed  CAS  Google Scholar 

  • Casetta I, Granieri E, Portaluppi F, Manfredini R (2002) Circadian variability in hemorrhagic stroke. JAMA 287:1266–1267

    Article  PubMed  Google Scholar 

  • Chasen C, Muller JE (1998) Cardiovascular triggers and morning events. Blood Press Monit 3:35–42

    PubMed  Google Scholar 

  • Clement DL, De Buyzere ML, De Bacquer DA et al (2003) Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med 348:2407–2415

    Article  PubMed  Google Scholar 

  • Cohen MC, Rohtla KM, Lavery CE, Muller JE, Middleman MA (1997) Meta analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol 79:1512–1516

    Article  PubMed  CAS  Google Scholar 

  • Crespo C, Aboy M, Fernández JR, Mojón A (2012) Automatic identification of activity-rest periods based on actigraphy. Med Biol Eng Comput 50:329–340

    Article  PubMed  Google Scholar 

  • Crespo C, Fernández JR, Aboy M, Mojón A (2013) Clinical application of a novel automatic algorithm for actigraphy-based activity and rest period identification to accurately determine awake and asleep ambulatory blood pressure parameters and cardiovascular risk. Chronobiol Int 30:43–54

    Article  PubMed  Google Scholar 

  • Crespo JJ, Piñeiro L, Otero A et al (2013) Administration-time-dependent effects of hypertension treatment on ambulatory blood pressure in patients with chronic kidney disease. Chronobiol Int 30:159–175

    Article  PubMed  CAS  Google Scholar 

  • Cugini P (1996) The treatability of refractory or resistant hypertension by personalized antihypertensive chronotherapy based on ambulatory monitoring of the arterial pressure. Recenti Prog Med 87:51–57

    PubMed  CAS  Google Scholar 

  • Cuspidi C, Macca G, Sampieri L et al (2001) High prevalence of cardiac and extracardiac target organ damage in refractory hypertension. J Hypertens 19:2063–2070

    Article  PubMed  CAS  Google Scholar 

  • Cuspidi C, Meani S, Lonati L et al (2006) Short-term reproducibility of a non-dipping pattern in type 2 diabetic hypertensive patients. J Hypertens 24:647–653

    Article  PubMed  CAS  Google Scholar 

  • Dahlöf B (2009) Management of cardiovascular risk with RAS inhibitor/CCB combination therapy. J Hum Hypertens 23:77–85

    Article  PubMed  CAS  Google Scholar 

  • Davidson MB, Hix JK, Vidt DG, Brotman DJ (2006) Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch Intern Med 166:846–852

    Article  PubMed  Google Scholar 

  • Deedwania PC (ed) (1997) Circadian rhythms of cardiovascular disorders. Futura Publishing, Armonk, NY

    Google Scholar 

  • Deedwania PC, Nelson J (1990) Pathophysiology of silent ischemia during daily life. Circulation 82:1296–1304

    Article  PubMed  CAS  Google Scholar 

  • Dolan E, Stanton A, Thijs L et al (2005) Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension 46:156–161

    Article  PubMed  CAS  Google Scholar 

  • Eguchi K, Pickering TG, Hoshide S et al (2008) Ambulatory blood pressure is a better marker than clinic blood pressure in predicting cardiovascular events in patients with/without type 2 diabetes. Am J Hypertens 21:443–450

    Article  PubMed  Google Scholar 

  • Eguchi K, Shimizu M, Hoshide S, Shimada K, Kario K (2012) A bedtime dose of ARB was better than a morning dose in improving baroreflex sensitivity and urinary albumin excretion—the J-TOP study. Clin Exp Hypertens 34:488–492

    Article  PubMed  CAS  Google Scholar 

  • Elliot WJ (1998) Circadian variation in the timing of stroke onset. A meta-analysis. Stroke 29:992–996

    Article  Google Scholar 

  • Fabbian F, Smolensky MH, Tiseo R, Pala M, Manfredini R, Portaluppi F (2013) Dipper and non-dipper blood pressure 24-hour patterns: circadian rhythm-dependent physiologic and pathophysiologic mechanisms. Chronobiol Int 30:17–30

    Article  PubMed  Google Scholar 

  • Fagard RH (2012) Resistant hypertension. Heart 98:254–261

    Article  PubMed  CAS  Google Scholar 

  • Fagard RH, Celis H, Thijs L et al (2008) Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension 51:55–61

    Article  PubMed  CAS  Google Scholar 

  • Fan HQ, Li Y, Thijs L et al (2010) Prognostic value of isolated nocturnal hypertension on ambulatory measurement in 8711 individuals from 10 populations. J Hypertens 28:2036–2045

    Article  PubMed  CAS  Google Scholar 

  • Farah R, Makhoul N, Arraf Z, Khamisy-Farah R (2013) Switching therapy to bedtime for uncontrolled hypertension with a nondipping pattern: a prospective randomized-controlled study. Blood Press Monit 18:227–231

    Article  PubMed  Google Scholar 

  • Gallerani M, Portaluppi F, Grandi E, Manfredini R (1997) Circadian rhythmicity in the occurrence of spontaneous acute dissection and rupture of thoracic aorta. J. Thorac Cardiovasc Surg 113:603–604

    Article  CAS  Google Scholar 

  • Gordon RD, Wolfe LK, Island DP, Liddle GW (1966) A diurnal rhythm in plasma renin activity in man. J Clin Invest 45:1587–1592

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gosse P, Lasserre R, Minifié C, Lemetayer P, Clementy J (2004) Blood pressure on rising. J Hypertens 22:1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Gradman AH (2011) Sleep-time blood pressure. A validated therapeutic target. J Am Coll Cardiol 58:1174–1175

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Yih BM, Atkinson L, Longstreth J (1995) The effect of food, time of dosing and body composition on the pharmacokinetics and pharmacodynamics of verapamil and norverapamil. J Clin Pharmacol 35:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC (2007) Ambulatory blood pressure monitoring in the prediction of cardiovascular events and effects of chronotherapy: rationale and design of the MAPEC study. Chronobiol Int 24:749–775

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE (2009) Chronotherapy with the angiotensin-converting enzyme inhibitor ramipril in essential hypertension: improved blood pressure control with bedtime dosing. Hypertension 54:40–46

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Fernández JR, Ayala DE, Mojón A, Alonso I, Smolensky M (2001) Circadian rhythm of double (rate-pressure) product in healthy normotensive young subjects. Chronobiol Int 18:475–489

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Fernández JR, Mojón A, Alonso I, Calvo C (2002a) Modeling the circadian variability of ambulatorily monitored blood pressure by multiple-component analysis. Chronobiol Int 19:461–481

    Article  PubMed  Google Scholar 

  • Hermida RC, Calvo C, Ayala DE, Fernández JR, Ruilope LM, López JE (2002b) Evaluation of the extent and duration of the “ABPM effect” in hypertensive patients. J Am Coll Cardiol 40:710–717

    Article  PubMed  Google Scholar 

  • Hermida RC, Calvo C, Ayala DE, Mojón A, López JE (2002c) Relationship between physical activity and blood pressure in dipper and nondipper hypertensive patients. J Hypertens 20:1097–1104

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Calvo C, Ayala DE et al (2003) Administration-time-dependent effects of valsartan on ambulatory blood pressure in hypertensive subjects. Hypertension 42:283–290

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Calvo C, Ayala DE et al (2004) Administration-time-dependent effects of doxazosin GITS on ambulatory blood pressure of hypertensive subjects. Chronobiol Int 21:277–296

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Calvo C et al (2005a) Effects of the time of day of antihypertensive treatment on the ambulatory blood pressure pattern of patients with resistant hypertension. Hypertension 46:1053–1059

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Calvo C, Ayala DE et al (2005b) Treatment of non-dipper hypertension with bedtime administration of valsartan. J Hypertens 23:1913–1922

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Calvo C, Ayala DE, López JE (2005c) Decrease in urinary albumin excretion associated to the normalization of nocturnal blood pressure in hypertensive subjects. Hypertension 46:960–968

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Calvo C, Ayala DE et al (2005d) Administration time-dependent effects of valsartan on ambulatory blood pressure in elderly hypertensive subjects. Chronobiol Int 22:755–776

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Calvo C, Ayala DE, Rodríguez M, Chayán L, López JE (2006) Administration time-dependent effects of nebivolol on the diurnal/nocturnal blood pressure ratio in hypertensive patients. J Hypertens 24(suppl 4):S89

    Google Scholar 

  • Hermida RC, Ayala DE, Calvo C (2007a) Optimal timing of antihypertensive dosing: focus on valsartan. Ther Clin Risk Manag 3:119–131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Fernandez JR, Mojón A, Calvo C (2007b) Influence of measurement duration and frequency on ambulatory blood pressure monitoring. Rev Esp Cardiol 60:131–138

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Portaluppi F (2007c) Circadian variation of blood pressure: the basis for the chronotherapy of hypertension. Adv Drug Deliv Rev 59:904–922

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Calvo C, Portaluppi F, Smolensky MH (2007d) Chronotherapy of hypertension: administration-time dependent effects of treatment on the circadian pattern of blood pressure. Adv Drug Deliv Rev 59:923–939

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Fernández JR, Calvo C (2007e) Comparison of the efficacy of morning versus evening administration of telmisartan in essential hypertension. Hypertension 50:715–722

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Fernández JR, Calvo C (2008a) Chronotherapy improves blood pressure control and reverts the nondipper pattern in patients with resistant hypertension. Hypertension 51:69–76

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A et al (2008b) Comparison of the effects on ambulatory blood pressure of awakening versus bedtime administration of torasemide in essential hypertension. Chronobiol Int 25:950–970

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Mojon A, Fernandez JR (2008c) Chronotherapy with nifedipine GITS in hypertensive patients: improved efficacy and safety with bedtime dosing. Am J Hypertens 21:948–954

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Chayán L, Mojón A, Fernández JR (2009) Administration-time-dependent effects of olmesartan on the ambulatory blood pressure of essential hypertension patients. Chronobiol Int 26:61–79

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Fontao MJ, Mojón A, Alonso I, Fernández JR (2010a) Administration-time-dependent effects of spirapril on ambulatory blood pressure in uncomplicated essential hypertension. Chronobiol Int 27:560–574

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Fontao MJ, Mojón A, Fernández JR (2010b) Chronotherapy with valsartan/amlodipine combination in essential hypertension: improved blood pressure control with bedtime dosing. Chronobiol Int 27:1287–1303

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fernández JR (2010c) Effects of time of antihypertensive treatment on ambulatory blood pressure and clinical characteristics of subjects with resistant hypertension. Am J Hypertens 23:432–439

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fernández JR (2010d) Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int 27:1629–1651

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Fernández JR, Portaluppi F, Fabbian F, Smolensky MH (2011a) Circadian rhythms in blood pressure regulation and optimization of hypertension treatment with ACE inhibitor and ARB medications. Am J Hypertens 24:383–391

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fernández JR (2011b) Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J Am Coll Cardiol 58:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fernández JR (2011c) Influence of time of day of blood pressure-lowering treatment on cardiovascular risk in hypertensive patients with type 2 diabetes. Diabetes Care 34:1270–1276

    Article  PubMed Central  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fernández JR (2011d) Bedtime dosing of antihypertensive medications reduces cardiovascular risk in CKD. J Am Soc Nephrol 22:2313–2321

    Article  PubMed Central  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fontao MJ, Fernández JR (2011e) Chronotherapy with valsartan/hydrochlorothiazide combination in essential hypertension: improved sleep-time blood pressure control with bedtime dosing. Chronobiol Int 28:601–610

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fernández JR (2012a) Sleep-time blood pressure as a therapeutic target for cardiovascular risk reduction in type 2 diabetes. Am J Hypertens 25:325–334

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fernández JR (2012b) Sleep-time blood pressure and the prognostic value of isolated-office and masked hypertension. Am J Hypertens 25:297–305

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Crespo JJ et al (2013a) Influence of age and hypertension treatment-time on ambulatory blood pressure in hypertensive patients. Chronobiol Int 30:176–191

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Fernández JR, Mojón A (2013b) Sleep-time blood pressure: prognostic value and relevance as a therapeutic target for cardiovascular risk reduction. Chronobiol Int 30:68–86

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Fernández JR et al (2013c) Administration-time-differences in effects of hypertension medications on ambulatory blood pressure regulation. Chronobiol Int 30:280–314

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Fontao MJ, Mojón A, Fernández JR (2013d) Ambulatory blood pressure monitoring: importance of sampling rate and duration—48 versus 24 hours—on the accurate assessment of cardiovascular risk. Chronobiol Int 30:55–67

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fernández JR (2013e) Cardiovascular risk of essential hypertension: influence of class, number, and treatment-time regimen of hypertension medications. Chronobiol Int 30:315–327

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fernández JR (2013f) Blunted sleep-time relative blood pressure decline increases cardiovascular risk independent of blood pressure level—the “normotensive non-dipper” paradox. Chronobiol Int 30:87–98

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Fernández JR (2013g) Role of time-of-day of hypertension treatment on the J-shaped relationship between blood pressure and cardiovascular risk. Chronobiol Int 30:328–339

    Article  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Smolensky MH et al (2013h) Chronotherapy improves blood pressure control and reduces vascular risk in CKD. Nat Rev Nephrol 9:358–368

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ríos MT, Crespo JJ et al (2013i) Treatment-time regimen of hypertension medications significantly affects ambulatory blood pressure and clinical characteristics of patients with resistant hypertension. Chronobiol Int 30:192–206

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Smolensky MH, Ayala DE et al (2013j) 2013 ambulatory blood pressure monitoring recommendations for the diagnosis of adult hypertension, assessment of cardiovascular and other hypertension-associated risk, and attainment of therapeutic goals. Joint recommendations from the International Society for Chronobiology (ISC), American Association of Medical Chronobiology and Chronotherapeutics (AAMCC), Spanish Society of Applied Chronobiology, Chronotherapy, and Vascular Risk (SECAC), Spanish Society of Atherosclerosis (SEA), and Romanian Society of Internal Medicine (RSIM). Chronobiol Int 30:355–410

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Mojón A, Smolensky MH, Portaluppi F, Fernández JR (2014a) Sleep-time ambulatory blood pressure as a novel therapeutic target for cardiovascular risk reduction. J Hum Hypertens 28:564–574. doi:10.1038/jhh.2014.1

    Article  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Smolensky MH et al (2014b) Chronotherapeutics of conventional blood pressure-lowering medications: simple, low-cost means of improving management and treatment outcomes of hypertensive-related disorders. Curr Hypertens Rep 16:412. doi:10.1007/s11906-013-0412-x

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Smolensky MH, Mojón A, Fernández JR, Portaluppi F (2014c) Chronotherapy of hypertension with ACEIs and CKD—a new solution to an old problem. In: Onuigbo M (ed) ACE inhibitors: medical uses, mechanisms of action, potential adverse effects and related topics, vol 2. Nova Science, Hauppauge, NY, pp 3–39

    Google Scholar 

  • Hermida RC, Smolensky MH, Ayala DE et al (2014d) Abnormalities in chronic kidney disease of ambulatory blood pressure 24 h patterning and normalization by bedtime hypertension chronotherapy. Nephrol Dial Transplant 29:1160–1167. doi:10.1093/ndt/gft285

    Article  PubMed  CAS  Google Scholar 

  • Hoshino A, Nakamura T, Matsubara H (2010) The bedtime administration ameliorates blood pressure variability and reduces urinary albumin excretion in amlodipine-olmesartan combination therapy. Clin Exp Hypertens 32:416–422

    Article  PubMed  CAS  Google Scholar 

  • Ingelsson E, Bjorklund-Bodegard K, Lind L, Arnlov J, Sundstrom J (2006) Diurnal blood pressure pattern and risk of congestive heart failure. JAMA 295:2859–2866

    Article  PubMed  CAS  Google Scholar 

  • Israel S, Israel A, Ben-Dov IZ, Bursztyn M (2011) The morning blood pressure surge and all-cause mortality in patients referred for ambulatory blood pressure monitoring. Am J Hypertens 24:796–801

    Article  PubMed  Google Scholar 

  • James PA, Oparil S, Carter BL et al (2013) 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. doi:10.1001/jama.2013.284427

    PubMed Central  Google Scholar 

  • Jumabay M, Ozawa Y, Kawamura H et al (2002) Ambulatory blood pressure monitoring in Uygur centenarians. Circ J 66:75–79

    Article  PubMed  Google Scholar 

  • Kanabrocki EL, George M, Hermida RC et al (2001) Day-night variations in blood levels of nitric oxide, T-TFPI and E-selectin. Clin Appl Thromb Hemost 7:339–345

    Article  PubMed  CAS  Google Scholar 

  • Kario K, Pickering TG, Matsuo T, Hoshide S, Schwartz JE, Shimada K (2001) Stroke prognosis and abnormal nocturnal blood pressure falls in older hypertensives. Hypertension 38:852–857

    Article  PubMed  CAS  Google Scholar 

  • Kario K, Pickering TG, Umeda Y et al (2003) Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation 107:1401–1406

    Article  PubMed  Google Scholar 

  • Kario K, Hoshide S, Shimizu M et al (2010) Effects of dosing time of angiotensin II receptor blockade titrated by self-measured blood pressure recordings on cardiorenal protection in hypertensives: the Japan Morning Surge-Target Organ Protection (J-TOP) study. J Hypertens 28:1574–1583

    Article  PubMed  CAS  Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150

    Article  Google Scholar 

  • Kikuya M, Ohkubo T, Asayama K et al (2005) Ambulatory blood pressure and 10-year risk of cardiovascular and noncardiovascular mortality. The Ohasama study. Hypertension 45:240–245

    Article  PubMed  CAS  Google Scholar 

  • Koga H, Hayashi J, Yamamoto M, Kitamoto K (2005) Prevention of morning surge of hypertension by the evening administration of carvedilol. Jpn Med Assoc J 48:398–403

    Google Scholar 

  • Kool MJ, Wijnen JA, Derkx FH, Struijker Boudier HA, Van Bortel LM (1994) Diurnal variation in prorenin in relation to other humoral factors and hemodynamics. Am J Hypertens 7:723–730

    PubMed  CAS  Google Scholar 

  • Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L (1989) Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond) 77:105–111

    Article  CAS  Google Scholar 

  • Labrecque G, Beauchamp D (2003) Rhythms and pharmacokinetics. In: Redfern P (ed) Chronotherapeutics. Pharmaceutical Press, London, pp 75–110

    Google Scholar 

  • Lakatua DJ, Haus E, Halberg F et al (1986) Circadian characteristics of urinary epinephrine and norepinephrine from healthy young women in Japan and USA. Chronobiol Int 3:189–195

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Wang JG, Gong L, Liu G, Staessen JA (1998) Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension. Systolic Hypertension in China (Syst-China) Collaborative Group. J Hypertens 16:1823–1829

    Article  PubMed  CAS  Google Scholar 

  • Mancia G, Laurent S, Agabiti-Rosei E et al (2009) Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. J Hypertens 27:2121–2158

    Article  PubMed  CAS  Google Scholar 

  • Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 31:1281–1357

    Article  PubMed  CAS  Google Scholar 

  • Manfredini R, Gallerani M, Portaluppi F, Salmi R, Fersini C (1997) Chronobiological patterns of onset of acute cerebrovascular diseases. Thromb Res 88:451–463

    Article  PubMed  CAS  Google Scholar 

  • Mehta HR, Manfredini R, Hassan F et al (2002) Chronobiological patterns of acute aortic dissection. Circulation 106:1110–1115

    Article  PubMed  Google Scholar 

  • Meng Y, Zhang Z, Liang X, Wu C, Qi G (2010) Effects of combination therapy with amlodipine and fosinopril administered at different times on blood pressure and circadian blood pressure pattern in patients with essential hypertension. Acta Cardiol 65:309–314

    Article  PubMed  Google Scholar 

  • Metoki H, Ohkubo T, Kikuya M et al (2006) Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline. The Ohasama study. Hypertension 47:149–154

    Article  PubMed  CAS  Google Scholar 

  • Middeke M, Kluglich M, Holzgreve H (1991) Chronopharmacology of captopril plus hydrochlorothiazide in hypertension: morning versus evening dosing. Chronobiol Int 8:506–510

    Article  PubMed  CAS  Google Scholar 

  • Milani RV (2005) Reaching for aggressive blood pressure goals: role of angiotensin receptor blockade in combination therapy. Am J Manag Care 11(suppl 7):S220–S227

    PubMed  Google Scholar 

  • Minutolo R, Gabbai FB, Borrelli S et al (2007) Changing the timing of antihypertensive therapy to reduce nocturnal blood pressure in CKD: an 8-week uncontrolled trial. Am J Kidney Dis 50:908–917

    Article  PubMed  Google Scholar 

  • Minutolo R, Agarwal R, Borrelli S et al (2011) Prognostic role of ambulatory blood pressure measurement in patients with nondialysis chronic kidney disease. Arch Intern Med 171:1090–1098

    Article  PubMed  Google Scholar 

  • Mojón A, Ayala DE, Piñeiro L et al (2013) Comparison of ambulatory blood pressure parameters of hypertensive patients with and without chronic kidney disease. Chronobiol Int 30:145–158

    Article  PubMed  CAS  Google Scholar 

  • Moyá A, Crespo JJ, Ayala DE et al (2013) Effects of time-of-day of hypertension treatment on ambulatory blood pressure and clinical characteristics of patients with type 2 diabetes. Chronobiol Int 30:116–131

    Article  PubMed  CAS  Google Scholar 

  • Muller JE, Tofler GH, Stone PH (1989) Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79:733–743

    Article  PubMed  CAS  Google Scholar 

  • Nakano S, Fukuda M, Hotta F et al (1998) Reversed circadian blood pressure rhythm is associated with occurrences of both fatal and nonfatal events in NIDDM subjects. Diabetes 47:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Neutel JM, Smith DHG (2003) Evaluation of angiotensin II receptor blockers for 24-hour blood pressure control: meta-analysis of a clinical database. J Clin Hypertens 1:58–63

    Article  Google Scholar 

  • Niskikawa T, Omura M, Saito J, Matsuzawa Y (2013) The possibility of resistant hypertension during the treatment of hypertensive patients. Hypertens Res 36:924–929

    Article  Google Scholar 

  • O’Sullivan C, Duggan J, Atkins N, O’Brien E (2003) Twenty-four-hour ambulatory blood pressure in community-dwelling elderly men and women aged 60-102 years. J Hypertens 21:1641–1647

    Article  PubMed  Google Scholar 

  • Ohkubo T, Hozawa A, Yamaguchi J et al (2002) Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens 20:2183–2189

    Article  PubMed  CAS  Google Scholar 

  • Okeahialam B, Ohihoin E, Ajuluchukwu J (2011) Chronotherapy in Nigerian hypertensives. Ther Adv Cardiovasc Dis 5:113–118

    Article  PubMed  Google Scholar 

  • Okyar A, Dressler C, Hanafy A, Baktir G, Lemmer B, Spahn-Langguth H (2012) Circadian variations in exsorptive transport: in-situ intestinal perfusion data and in-vivo relevance. Chronobiol Int 29:443–453

    Article  PubMed  CAS  Google Scholar 

  • Pechère-Bertschi A, Nussberger J, Decosterd L et al (1988) Renal response to the angiotensin II receptor subtype 1 antagonist irbesartan versus enalapril in hypertensive patients. J Hypertens 16:385–393

    Article  Google Scholar 

  • Perloff D, Sokolow M, Cowan R (1983) The prognostic value of ambulatory blood pressures. JAMA 249:2792–2798

    Article  PubMed  CAS  Google Scholar 

  • Pistrosch F, Reissmann E, Wildbrett J, Koehler C, Hanefeld M (2007) Relationship between diurnal blood pressure variation and diurnal blood glucose levels in type 2 diabetic patients. Am J Hypertens 20:541–545

    Article  PubMed  CAS  Google Scholar 

  • Pogue V, Rahman M, Lipkowitz M et al (2009) Disparate estimates of hypertension control from ambulatory and clinic blood pressure measurements in hypertensive kidney disease. Hypertension 53:20–27

    Article  PubMed  CAS  Google Scholar 

  • Portaluppi F, Hermida RC (2007) Circadian rhythms in cardiac arrhythmias and opportunities for their chronotherapy. Adv Drug Deliv Rev 59:940–951

    Article  PubMed  CAS  Google Scholar 

  • Portaluppi F, Smolensky MH (2007) Circadian rhythmic and environmental determinants of 24-hour blood pressure regulation in normal and hypertensive conditions. In: White WB (ed) Blood pressure monitoring in cardiovascular medicine and therapeutics. Humana, Totowa, NJ, pp 135–158

    Chapter  Google Scholar 

  • Portaluppi F, Montanari L, Ferlini M, Gilli P (1990) Altered circadian rhythms of blood pressure and heart rate in non-hemodialysis chronic renal failure. Chronobiol Int 7:321–327

    Article  PubMed  CAS  Google Scholar 

  • Portaluppi F, Trasforini G, Margutti A et al (1992) Circadian rhythm of calcitonin gene-related peptide in uncomplicated essential hypertension. J Hypertens 10:1227–1234

    Article  PubMed  CAS  Google Scholar 

  • Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F (2012) Circadian rhythms and cardiovascular health. Sleep Med Rev 16:151–166

    Article  PubMed  Google Scholar 

  • Qiu YG, Zhu JH, Tao QM et al (2005) Captopril administered at night restores the diurnal blood pressure rhythm in adequately controlled, nondipping hypertensives. Cardiovasc Drugs Ther 19:189–195

    Article  PubMed  CAS  Google Scholar 

  • Rahman M, Greene T, Phillips RA et al (2013) A trial of 2 strategies to reduce nocturnal blood pressure in blacks with chronic kidney disease. Hypertension 61:82–88

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reinberg A, Smolensky MH (1982) Circadian changes of drug disposition in man. Clin Pharmacokinet 7:401–420

    Article  PubMed  CAS  Google Scholar 

  • Ríos MT, Domínguez-Sardiña M, Ayala DE et al (2013) Prevalence and clinical characteristics of isolated-office and true resistant hypertension determined by ambulatory blood pressure monitoring. Chronobiol Int 30:207–220

    Article  PubMed  Google Scholar 

  • Salles GF, Cardoso CR, Muxfeldt ES (2008) Prognostic influence of office and ambulatory blood pressures in resistant hypertension. Arch Intern Med 168:2340–2346

    Article  PubMed  Google Scholar 

  • Sharpe M, Jarvis B, Goa KL (2001) Telmisartan: a review of its use in hypertension. Drugs 61:1501–1529

    Article  PubMed  CAS  Google Scholar 

  • Smolensky MH, Haus E (2001) Circadian rhythms in clinical medicine with applications to hypertension. Am J Hypertens 14(9 Pt 2):280S–290S

    Article  PubMed  CAS  Google Scholar 

  • Smolensky MH, Portaluppi F (1999) Chronopharmacology and chronotherapy of cardiovascular medications: relevance to prevention and treatment of coronary heart disease. Am Heart J 137(4 Pt 2):S14–S24

    Article  PubMed  CAS  Google Scholar 

  • Smolensky MH, Hermida RC, Castriotta RJ, Portaluppi F (2007) Role of sleep-wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med 8:668–680

    Article  PubMed  Google Scholar 

  • Smolensky MH, Hermida RC, Ayala DE, Tiseo R, Portaluppi F (2010) Administration-time-dependent effect of blood pressure-lowering medications: basis for the chronotherapy of hypertension. Blood Press Monit 15:173–180

    Article  PubMed  Google Scholar 

  • Smolensky MH, Siegel RA, Haus E, Hermida RC, Portaluppi F (2012) Biological rhythms, drug delivery, and chronotherapeutics. In: Siepmann J, Siegel RA, Rathbone MJ (eds) Fundamentals and applications of controlled release drug delivery. Springer, Heidelberg, pp 359–443

    Chapter  Google Scholar 

  • Sothern RB, Vesely DL, Kanabrocki EL et al (1995) Temporal (circadian) and functional relationship between atrial natriuretic peptides and blood pressure. Chronobiol Int 12:106–120

    Article  PubMed  CAS  Google Scholar 

  • Staessen JA, Fagard R, Thijs L et al (1997) Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. Lancet 350:757–764

    Article  PubMed  CAS  Google Scholar 

  • Staessen JA, Thijs L, Fagard R et al (1999) Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. JAMA 282:539–546

    Article  PubMed  CAS  Google Scholar 

  • Sturrock NDC, George E, Pound N, Stevenson J, Peck GM, Sowter H (2000) Non-dipping circadian blood pressure and renal impairment are associated with increased mortality in diabetes mellitus. Diabet Med 17:360–364

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Aizawa Y (2011) Evaluation of dosing time-related anti-hypertensive efficacy of valsartan in patients with type 2 diabetes. Clin Exp Hypertens 33:56–62

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Svensson P, de Faire U, Sleight P, Yusuf S, Östergren J (2001) Comparative effects of ramipril on ambulatory and office blood pressures. A HOPE substudy. Hypertension 38:e28–e32

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Toda T, Fujii T, Matsui N (2009) Bedtime administration of long-acting antihypertensive drugs restores normal nocturnal blood pressure fall in nondippers with essential hypertension. Clin Exp Nephrol 13:467–472

    Article  PubMed  CAS  Google Scholar 

  • Tofé S, García B (2009) 24-hour and nighttime blood pressures in type 2 diabetic hypertensive patients following morning or evening administration of olmesartan. J Clin Hypertens (Greenwich) 11:426–431

    Article  CAS  Google Scholar 

  • Verdecchia P, Porcellati C, Schillaci G et al (1994) Ambulatory blood pressure: an independent predictor of prognosis in essential hypertension. Hypertension 24:793–801

    Article  PubMed  CAS  Google Scholar 

  • Verdecchia P, Angeli F, Mazzotta G et al (2012) Day-night dip and early-morning surge in blood pressure in hypertension: prognostic implications. Hypertension 60:34–42

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Zhang J, Liu X et al (2013) Effect of valsartan with bedtime dosing on chronic kidney disease patients with nondipping blood pressure pattern. J Clin Hypertens (Greenwich) 15:48–54

    Article  CAS  Google Scholar 

  • White WB, Black HR, Weber MA, Elliott WJ, Brysinski B, Fakourhi TD (1998) Comparison of effects of controlled-onset extended-release verapamil at bedtime and nifedipine gastrointestinal therapeutic system on arising on early morning blood pressure, heart rate, and the heart rate-blood pressure product. Am J Cardiol 81:424–431

    Article  PubMed  CAS  Google Scholar 

  • Winters CJ, Sallman AL, Vesely DL (1988) Circadian rhythm of prohormone atrial natriuretic peptides 1-30, 31-67 and 99-126 in man. Chronobiol Int 5:403–409

    Article  PubMed  CAS  Google Scholar 

  • Witte K, Lemmer B (2003) Rhythms and pharmacodynamics. In: Redfern P (ed) Chronotherapeutics. Pharmaceutical Press, London, pp 111–126

    Google Scholar 

  • Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients: the Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145–153

    Article  PubMed  CAS  Google Scholar 

  • Zanchetti A (2009) Bottom blood pressure or bottom cardiovascular risk? How far can cardiovascular risk be reduced? J Hypertens 27:1509–1520

    Article  PubMed  CAS  Google Scholar 

  • Zeng J, Jia M, Ran H et al (2011) Fixed-combination of amlodipine and diuretic chronotherapy in the treatment of essential hypertension: improved blood pressure control with bedtime dosing—a multicenter, open-label randomized study. Hypertens Res 34:767–772

    Article  PubMed  CAS  Google Scholar 

Download references

Sources of Support

Research supported by unrestricted grants from Ministerio de Ciencia e Innovación, Spanish Government (SAF2009-7028-FEDER); Instituto de Salud Carlos III, Ministerio de Economia y Competitividad, Spanish Government (PI14-00205); Consellería de Economía e Industria, Xunta de Galicia (09CSA018322PR); European Research Development Fund and Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (CN2012/251 & CN2012/260); Atlantic Research Center for Information and Communication Technologies (AtlantTIC); and Vicerrectorado de Investigación, University of Vigo.

Declaration of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón C. Hermida Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Hermida, R.C., Ayala, D.E., Smolensky, M.H., Portaluppi, F. (2016). Chronotherapy of Blood Pressure Medications to Improve Management of Hypertension and Reduce Vascular Risk. In: Gumz, M. (eds) Circadian Clocks: Role in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3450-8_11

Download citation

Publish with us

Policies and ethics