Skip to main content

Abstract

Pituitary adenomas, central neurocytomas, and pineal tumors are the major primary neuroendocrine neoplasms of the central nervous system; they are affecting mainly young adult and adult patient populations. Accumulation of research and clinical data clarify slowly those tumors’ morphology and biological behavior as we understand the molecular alterations of the tumors. This chapter is trying to review the recent development in this field, which may help us to make more accurate diagnoses and direct the clinicians to choose more appropriate treatment options for our patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farrell WE, Clayton RN. Molecular pathogenesis of pituitary tumors. Front Neuroendocrinol. 2000;21:174–98.

    Article  CAS  PubMed  Google Scholar 

  2. Lloyd RV. Molecular pathology of pituitary adenomas. J Neurooncol. 2001;54:111–9.

    Article  CAS  PubMed  Google Scholar 

  3. Farrell WE. Epigenetics of pituitary tumors: an update. Curr Opin Endocrinol Diabetes Obes. 2014;21(4):299–305.

    Article  CAS  PubMed  Google Scholar 

  4. Simpson DJ, Magnay J, Bicknell JE, Barkan AL, McNicol AM, Clayton RN, Farrell WE. Chromosome 13q deletion mapping in pituitary tumors: infrequent loss of the retinoblastoma susceptibility gene (RB1) despite loss of RB1 protein product in somatotropinomas. Cancer Res. 1999;59:1562–6.

    CAS  PubMed  Google Scholar 

  5. Zamore PD, Haley B. Rebo-genome: the big world of small RNAs. Science. 2005;309:1519–24.

    Article  CAS  PubMed  Google Scholar 

  6. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110.

    Article  CAS  PubMed  Google Scholar 

  7. Bates AS, Farrell WE, Bicknell EJ, Talbot AJ, Broome JC, Perrett CW, Thakker RV, Clayton RN. Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker. J Clin Endocrinol Metab. 1997;82:818–24.

    CAS  PubMed  Google Scholar 

  8. Duong CV, Emes RD, Wessely F, et al. Quantitative, genome-wide analysis of the DNA methylome in sporadic pituitary adenomas. Endocr Relate Cancer. 2012;19:805–16.

    Article  CAS  Google Scholar 

  9. Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol. 1997;11:433–41.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Bronotein M, Melmed S. Pituitary tumor-transforming gene expression in human pituitary adenomas. J Clin Endocrinol Metab. 1999;84:761–7.

    Article  CAS  PubMed  Google Scholar 

  11. Spade A, Vallar L, Faglia G. G protein oncogenes in pituitary tumors. Trans Endocrnol Metab. 1992;3:355–60.

    Article  Google Scholar 

  12. Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab. 1990;71:1427–33.

    Article  CAS  PubMed  Google Scholar 

  13. Alexander JM, Biller BMK, Bakkal H, Zervas NT, Arnold A, Klibanski A. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest. 1990;86:336–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levy A, Hall S, Yendall WA, Lightman SL. p53 gene mutations in pituitary adenoma: rare events. Clin Endocrinol. 1994;41:809–14.

    Article  CAS  Google Scholar 

  15. Lloyd RV, Jin L, Kulig E. Aberrant p27/kip1 expression in endocrine and other tumors. Am J Pathol. 1997;150(2):401–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Thapar K, Scheithauer BW, Kovacs K, Pernicome PJ, Laws ER. P53 expression in pituitary adenomas and carcinoma. Correlation with invasiveness and tumor growth fractions. Neurosurgery. 1996;38:765–71.

    Article  CAS  PubMed  Google Scholar 

  17. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh OY, Clark OH, Kawasaki E, Brourne HR, McCormick F. Two G protein oncogenes in human endocrine tumors. Science. 1990;249:655–9.

    Article  CAS  PubMed  Google Scholar 

  18. Takino H, Herman V, Weiss M, Melmed S. Purine binding factor (nm23) gene expression in pituitary tumors: markers of adenoma invasiveness. J Clin Endocrinol Metab. 1995;80:1733–8.

    CAS  PubMed  Google Scholar 

  19. Hunter T, Pines J. Cyclins and cancer II C cyclin D and CDK inhibitors come of age. Cell. 1994;79:573–82.

    Article  CAS  PubMed  Google Scholar 

  20. Yang I, Park S, Ryu M, Woo J, Kim S, Kim Y, Choi Y. Characteristics of gsp-positive growth hormone-secreting pituitary tumors in Korean acromegalic patients. Eur J Endocrinol. 1996;134:720–6.

    Article  CAS  PubMed  Google Scholar 

  21. Karger HJ, Alexander JM, Hedley-Whte ET, Klibansky A, Jameson LJ. Ras mutations in human pituitary tumors. J Clin Endocrinol Metab. 1992;74:914–9 (Add’l 07/28/14).

    Article  Google Scholar 

  22. Jordan S, Lidher K, Korbonits M, Lowe DG, Grossman AB. Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol. 2000;143:R1–6.

    Article  CAS  PubMed  Google Scholar 

  23. Qian X, Kulig E, Jin L, Lloyd RV. Expression of D-type cyclins in normal and neoplastic rat pituitary. Endocrinology. 1998;139:2058–67.

    CAS  PubMed  Google Scholar 

  24. Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict WE, Prager D. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors. Evidence for a chromosomal 13 tumor suppressor gene other than RB. Cancer Res. 1995;55:644–6.

    Google Scholar 

  25. Woloschak M, Yu A, Xiao J, Post KD. Frequent loss of the p16/INK4a gene product in human pituitary tumors. Cancer Res. 1996;56:2493–6.

    CAS  PubMed  Google Scholar 

  26. Woloschak M, Yu A, Post KD. Frequent inactivation of the p16 gene in human pituitary tumors by gene methylation. Mol Carcinogen. 1997;19:221–4.

    Article  CAS  Google Scholar 

  27. Simpson DJ, Bicknell JE, McNicol AM, Clayton RN, Farrell WE. Hypermethylation of the p16/CDKN2A/MTSI gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. Genes Chrom Cancer. 1999;24:328–36.

    Article  CAS  PubMed  Google Scholar 

  28. Qian X, Jin L, Kulig E, Lloyd RV. DNA methylation regulates p27kip1 expression in rodent pituitary cell lines. Am J Pathol. 1998;153(5):1475–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franklin DS, Godfrey VL, Lee H, Kovales GL, Schoonhoven R, Chen-Kiang S, Su I, Xiong Y. CD inhibitors p18INK4C and p27kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Gene Dev. 1998;12:2899–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Farrell WE, Simpson D, Bates AS, Talbot JA, Bicknell J, Clayton RN. Chromosome 9p deletions in invasive and noninvasive nonfunctional pituitary adenomas. The deleted region involves markers outside the MTS1 and MTS2 gene. Cancer Res. 1999;57:2703–9.

    Google Scholar 

  31. Metzger AK, Mohapatra G, Minn YA, Bollen AW, Lamborn K, Waldman F, Wilson CB, Feuerstein BG. Multiple genetic aberrations including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg. 1999;90:306–14.

    Article  CAS  PubMed  Google Scholar 

  32. Franklin D, Godfrey VL, O’Brien DP, Deng C, Xiang Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppress tumor growth with distinct tissue specificity. Mol Cell Biol. 2000;20:6147–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Sciences. 2005;309:1519–24.

    Article  CAS  Google Scholar 

  34. Hibberts NA, Simpson DJ, Bicknell JE, Broome JC, Hoban PR, Clayton RN, Farrell WE. Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic pituitary adenomas. Clin Cancer Res. 1995;5:2133–9.

    Google Scholar 

  35. Choudhari KA, Kaliaperumal C, Jain A, Sarkar C, Soo MYS, Rades D, Singh J. Central neurocytoma: a multi-disciplinary review. Br J Neurosurg. 2009;23(6):585–95 (RR).

    Article  PubMed  Google Scholar 

  36. Kane AJ, Surhrue ME, Rutkowski MJ, Parsa AT. The molecular pathology of central neurocytomas. J Clin Neurosci. 2011;18:1–6 (M).

    Article  CAS  PubMed  Google Scholar 

  37. Myung JK, Cho HJ, Park CK, Chung CK, Choi SH, Kim SK, Park SH. Clinicopathological and genetic characteristics of extraventricular neurocytoma. Neuropathology. 2013;33:111–21.

    Article  CAS  PubMed  Google Scholar 

  38. Vasiljevic A, Champier J, Figarella-Branger D, Wierinckx A, Jouvet A, Fevre-Montange F. Molecular characterization of central neurocytomas: potential markers for tumor typing and progression. Neuropathology. 2013;33:149–61.

    Article  CAS  PubMed  Google Scholar 

  39. Hassoun J, Gambarelli D, Grisoli F, Pellet W, Salamon G, Pellissier JF, Toga M. Central neurocytoma. An electron-microscopic study of two cases. Acta Neuropathol. 1982;56:151–6.

    Article  CAS  PubMed  Google Scholar 

  40. Wilson AJ, Leaffer DH, Kohout ND. Differentiated cerebral neuroblastoma: a tumor in need of discovery. Human Pathol. 1985;16:647–9.

    Article  CAS  Google Scholar 

  41. Sanai N, Tramotin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-García Verdugo J, Berger MS, Alvarez-Buylla A. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427:740–4.

    Article  CAS  PubMed  Google Scholar 

  42. Patt S, Schmidt H, Labrakakis C, Weydt P, Fritsch M, Cervós-Navarro J, Kettenmann H. Human central neurocytoma cells show neuronal physiological properties in vitro. Acta Neuropathol. 1996;91:209–14.

    Article  CAS  PubMed  Google Scholar 

  43. Kim BJ, Kim SS, Kim JI, et al. Forskolin promotes astroglial differentiation of human central neurocytoma cells. Exp Mol Med. 2004;36:52–6.

    Article  CAS  PubMed  Google Scholar 

  44. Ishiuchi S, Nakazato Y, Lino M, et al. In vitro neuronal and glial production and differentiation of human central neurocytoma cells. J Neurosci Res. 1998;51:526–35.

    Article  CAS  PubMed  Google Scholar 

  45. von Deimling A, Kleihues P, Saremaslani P, Yasargil MG, Spoerri O, Südhof TC, Wiestler OD. Histogenesis and differentiation potential of central neurocytomas. Lab Invest. 1991;64:585–91.

    Google Scholar 

  46. Westphal M, Stavrou D, Nausch H, Valdueza JM, Herrmann HD. Human neurocytoma cells in culture show characteristics of astroglial differentiation. J Neurosci Res. 1994;38:698–704.

    Article  CAS  PubMed  Google Scholar 

  47. Yano H, Ohe N, Shinoda J, et al. Immunohistochemical study concerning the origin of neurocytoma – a case report. Pathol Oncol Res. 2009;15:301–5.

    Article  PubMed  Google Scholar 

  48. You H, Kim YI, Im SY, Yoshimura S, Iwama T. Immunohistochemical study of central neurocytoma, subependymoma, and subependymal giant cell astrocytoma. J Neurooncol. 2005;74:1–8.

    Article  PubMed  Google Scholar 

  49. Sugita Y, Yamada S, Sugita S, Sakata K, Morimatsu M, Shigemori M. The biochemical analysis of neurotransmitters in central neurocytomas. Int J Mol Med. 2001;7:521–5.

    CAS  PubMed  Google Scholar 

  50. Sim FJ, Keyoung HM, Goldman JE, Kim DK, Jung HW, Roy NS, Goldman SA. Neurocytoma is a tumor of adult neuronal progenitor cells. J Neurosci. 2006;26:12544–55.

    Article  CAS  PubMed  Google Scholar 

  51. Fujisawa H, Marukawa K, Hasegawa M, Tohma Y, Hayashi Y, Uchiyama N, Tachibana O, Yamashita J. Genetic differences between neurocytoma and dysembryoplastic neuroepithelial tumor and oligodendroglial tumors. J Neurosurg. 2002;97:1350–5.

    Article  PubMed  Google Scholar 

  52. Perry A, Fuller CE, Banerjee R, Brat DJ, Scheithauer BW. Ancillary FISH analysis for 1p and 19q status: preliminary observations in 287 gliomas and oligodendrogliomas mimics. Front Biosci. 2003;8:a1–9.

    Article  CAS  PubMed  Google Scholar 

  53. Brat DJ. Neuronal and glioneuronal neoplasms. In: Perry A, Brat DJ, editors. Practical surgical neuropathology, a diagnostic approach. 1st ed. Philadelphia: Churchill Livingston Elsevier; 2010. p. 125–63.

    Chapter  Google Scholar 

  54. Tong CY, Ng HK, Pang JC, Hu J, Hui AB, Poon WS. Central neurocytomas are genetically distinct from oligodendrogliomas and neuroblastomas. Histopathology. 2000;37:160–5.

    Article  CAS  PubMed  Google Scholar 

  55. Rodriguez FJ, Mota RA, Scheithauer BW, Giannini C, Blair H, New KC, Wu KJ, Dickson DW, Jenkins RB. Interphase cytogenetics for 1p19q and t(1:19)(q10;p10) may distinguish prognostically relevant subgroups in extraventricular neurocytoma. Brain Pathol. 2009;19:623–9.

    Article  CAS  PubMed  Google Scholar 

  56. Yin XL, Pang JC, Hui AB, et al. Detection of chromosomal imbalances in central neurocytomas by using comparative genomic hybridization. J Neurosurg. 2007;113:303–12.

    Google Scholar 

  57. Korshunov A, Sycheva R, Golanov A. Recurrent cytogenetic aberrations in central neurocytomas and their biological relevance. Acta Neuropathol. 2007;113:303–12.

    Article  PubMed  Google Scholar 

  58. Taruscio D, Danesi R, Montaldi A, Cerasoli S, Cenacchi G, Giangaspero F. Nonrandom gain of chromosome 7 in central neurocytoma: a chromosomal analysis and fluorescence in situ hybridization study. Virchows Arch. 1997;430:47–51.

    Article  CAS  PubMed  Google Scholar 

  59. Wullich B, Sattler HP, Fischer U, Meese E. Two independent amplification events on chromosome 7 in glioma: amplification of the epidermal growth factor receptor gene and amplification of the oncogene MET. Anticancer Res. 1994;14:577–9.

    CAS  PubMed  Google Scholar 

  60. Zhuang Z, Park WS, Pack S, Schmidt L, Vortmeyer AO, Pak E, Pham T, Weil RJ, Candidus S, Lubensky IA, Linehan WM, Zbar B, Weirich G. Trisomy 7 harboring non-random duplication of the mutant MET allele in hereditary papillary renal cell carcinomas. Nat Genet. 1998;20:66–9.

    Article  CAS  PubMed  Google Scholar 

  61. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3:203–16.

    Article  CAS  PubMed  Google Scholar 

  62. Malakho SG, Korshunov A, Stroganova AM, Poltaraus AB. Fast detection of MYCN copy number alterations in brain neuronal tumors by real-time PCR. J Clin Lab Anal. 2008;22:123–30.

    Article  CAS  PubMed  Google Scholar 

  63. Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and inhibition of neuronal differentiation. Genes Dev. 2002;16:2699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pession A, Tonelli R. The MYCN oncogene as a specific and selective drug target for peripheral and central nervous system tumors. Curr Cancer Drug Targets. 2005;5:273–83.

    Article  CAS  PubMed  Google Scholar 

  65. Musatov S, Robers J, Brook AI, Pena J, Betchen S, Pfaff DW, Kaplitt MG. Inhibition of neuronal phenotype by PTEN in PC12 cells. Proc Natl Acad Sci U S A. 2004;101:3627–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rao G, Pedone CA, Del Valle L, Reiss K, Holland EC, Fults DW. Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin expressing neural progenitors in mice. Oncogene. 2004;23:6156–62.

    Article  CAS  PubMed  Google Scholar 

  67. Soroseanu L, Kharbanda S, Chen R, Soriano RH, Aldape K, Misra A, Zha J, Forrest WF, Nigro JM, Modrusan Z, Feuerstein BG, Phillips HS. Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma. Proc Natl Acad Sci U S A. 2007;104:3466–71.

    Article  CAS  Google Scholar 

  68. Cororan RB, Bachar Raven T, Barakat MT, Lee EY, Scott MP. Insulin-like growth factor 2 is required for progression to advanced medulloblastoma in patched 1 heterozygous mice. Cancer Res. 2008;68:8788–95.

    Article  CAS  Google Scholar 

  69. Yao X, Hu JF, Daniels M, Shiran H, Zhou X, Yan H, Lu H, Zeng Z, Wang Q, Li T, Hoffman AR. A methylated oligonucleotide inhibits IGF2 expression and enhances survival in a model of hepatocellular carcinoma. J Clin Invest. 2003;111:265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lokker NA, Sullivan CM, Hollenback SJ, Israel MA, Giese NA. Platelet-derived growth factor)(PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res. 2002;62:3729–35.

    CAS  PubMed  Google Scholar 

  71. LaRochelle WJ, Jeffers M, Corvalan JR, Jia XC, Feng X, Vanegas S, Vickroy JD, Yang XD, Chen F, Gazit G, Mayotte J, Macaluso J, Rittman B, Wu F, Dhanabal M, Herrmann J, Lichenstein HS. Platelet-derived growth factor D: tumorigenicity in mice and dysregulated expression in human cancer. Cancer Res. 2002;62:2468–73.

    CAS  PubMed  Google Scholar 

  72. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM. Antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamics relationship. Clin Cancer Res. 2003;9:327–37.

    CAS  PubMed  Google Scholar 

  73. Carraway 3rd KL, Weber JL, Unger MJ, Ledesma J, Yu N, Gassmann M, Lai C. Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature. 1997;387:512–6.

    Article  CAS  PubMed  Google Scholar 

  74. Ghashghaei HT, Weber J, Pevny L, Schmid R, Schwab MH, Lloyd KC, Eisenstat DD, Lai C, Anton ES. The role of neuregulin-ErbB4 interaction on the proliferation and organization of cells in the subventricular zone. Proc Natl Acad Sci U S A. 2006;103:1930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Edwards JM, Bottenstein JE. Neuregulin 1 growth factor regulate proliferation but no apoptosis of a CNS neuronal progenitor cell line. Brain Res. 2006;1108:63–75.

    Article  CAS  PubMed  Google Scholar 

  76. Revillion F, Lhotellier V, Hornez L, Bonneterre J, Peyrat JP. ErbB/HER ligands in human breast cancer, and relationships with their receptors, the bio-pathological features and prognosis. Ann Oncol. 2008;19:73–80.

    Article  CAS  PubMed  Google Scholar 

  77. Tran H, Medina-Flores R, Cerilli LA, Phelps J, Lee FC, Wong G, Turner P. Primary disseminated central neurocytoma: cytology and MRI evidence of tumor spread prior to surgery. J Neurooncol. 2010;100:291–8.

    Article  PubMed  Google Scholar 

  78. Yamamoto I. Pineal region tumor: surgical anatomy and approach. J Neurooncol. 2001;54(3):263–75.

    Article  CAS  PubMed  Google Scholar 

  79. Jouvet A, Vasiljevic A, Champier J, Fevre Montange M. Pineal parenchymal tumours and pineal cysts. Neurochirugie. 2015;61(2–3):123–9. doi: 10.1016/j.neuchi.2013.04.003. Epub 2014 Jun 27.

    Google Scholar 

  80. Schild SE, Scheithauer BW, Schomberg PJ, Hook CC, Kelly PJ, Frick L, Robinow JS, Buskirk SJ. Pineal parenchymal tumors. Clinical, pathologic, and therapeutic aspects. Cancer. 1993;72:870–80.

    Article  CAS  PubMed  Google Scholar 

  81. Han SJ, Clark AJ, Ivan ME, Parsa AT, Perry A. Pathology of pineal parenchymal tumors. Neurosurg Clin N Am. 2011;22(3):335–40.

    Article  PubMed  Google Scholar 

  82. Hirato J, Nakazato Y. Pathology of pineal region tumors. J Neurooncol. 2001;54(3):239–49.

    Article  CAS  PubMed  Google Scholar 

  83. Konovalov AN, Pitskhelauri DI. Principles of treatment of the pineal region tumors. Surg Neurol. 2003;59(4):250–68.

    Article  PubMed  Google Scholar 

  84. Whittle IR, Signorini DF. Pineal region tumors and the role of stereotactic biopsy: review of the mortality, morbidity, and diagnostic rates in 370 cases. Neurosurgery. 1998;42(3):676–7.

    Article  CAS  PubMed  Google Scholar 

  85. Nakazato Y, Jouvet A, Scheithauer BW. Tumours of the pineal region. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, editors. WHO classification of tumours of the central nervous system. 4th ed. Lyon: IARC, WHO Press; 2007. p. 123–7.

    Google Scholar 

  86. Vandergriff C, Opatowsky M, O'Rourke B, Layton K. Papillary tumor of the pineal region. Proc (Bayl Univ Med Cent). 2012;25(1):78–9.

    Google Scholar 

  87. Rickard KA, Parker JR, Vitaz TW, Plaga AR, Wagner S, Parker Jr JC. Papillary tumor of the pineal region: two case studies and a review of the literature. Ann Clin Lab Sci. 2011;41(2):174–81.

    PubMed  Google Scholar 

  88. Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol. 2004;25(3–4):177–95.

    Article  CAS  PubMed  Google Scholar 

  89. Cho BK, Wang KC, Nam DH, Kim DG, Jung HW, Kim HJ, Han DH, Choi KS. Pineal tumors: experience with 48 cases over 10 years. Childs Nerv Syst. 1998;14(1–2):53–8.

    Article  CAS  PubMed  Google Scholar 

  90. Jouvet A, Saint-Pierre G, Fauchon F, Privat K, Bouffet E, Ruchoux MM, Chauveinc L, Fèvre-Montange M. Pineal parenchymal tumors: a correlation of histological features with prognosis in 66 cases. Brain Pathol. 2000;10(1):49–60.

    Article  CAS  PubMed  Google Scholar 

  91. Min KW, Scheithauer BW, Bauserman SC. Pineal parenchymal tumors: an ultrastructural study with prognostic implications. Ultrastruct Pathol. 1994;18(1–2):69–85.

    Article  CAS  PubMed  Google Scholar 

  92. Fauchon F, Jouvet A, Paquis P, Saint-Pierre G, Mottolese C, Ben Hassel M, Chauveinc L, Sichez JP, Philippon J, Schlienger M, Bouffet E. Parenchymal pineal tumors: a clinicopathological study of 76 cases. Int J Radiat Oncol Biol Phys. 2000;46(4):959–68.

    Article  CAS  PubMed  Google Scholar 

  93. Mena H, Rushing EJ, Ribas JL, Delahunt B, McCarthy WF. Tumors of pineal parenchymal cells: a correlation of histological features, including nucleolar organizer regions, with survival in 35 cases. Hum Pathol. 1995;26(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  94. Fèvre-Montange M, Hasselblatt M, Figarella-Branger D, Chauveinc L, Champier J, Saint-Pierre G, Taillandier L, Coulon A, Paulus W, Fauchon F, Jouvet A. Prognosis and histopathologic features in papillary tumors of the pineal region: a retrospective multicenter study of 31 cases. J Neuropathol Exp Neurol. 2006;65(10):1004–11.

    Article  PubMed  Google Scholar 

  95. Fevre Montange M, Vasiljevic A, Champier J, Jouvet A. Papillary tumor of the pineal region: Histopathological characterization and review of the literature. Neurochirurgie. 2015;61(2–3):138–42. doi: 10.1016/j.neuchi.2013.04.011. Epub 2014 Feb 18.

    Google Scholar 

  96. Gutenberg A, Brandis A, Hong B, Gunawan B, Enders C, Schaefer IM, Burger R, Ostertag H, Gaab M, Krauss JK, Füzesi L. Common molecular cytogenetic pathway in papillary tumors of the pineal region (PTPR). Brain Pathol. 2011;21(6):672–7.

    Article  CAS  PubMed  Google Scholar 

  97. Sharma MC, Jain D, Sarkar C, Suri V, Garg A, Sharma BS, Mehta VS. Papillary tumor of the pineal region–a recently described entity: a report of three cases and review of the literature. Clin Neuropathol. 2009;28(4):295–302.

    Article  CAS  PubMed  Google Scholar 

  98. Tsumanuma I, Tanaka R, Washiyama K. Clinicopathological study of pineal parenchymal tumors: correlation between histopathological features, proliferative potential, and prognosis. Brain Tumor Pathol. 1999;16(2):61–8.

    Article  CAS  PubMed  Google Scholar 

  99. Herrick MK, Rubinstein LJ. The cytological differentiating potential of pineal parenchymal neoplasms (true pinealomas). A clinicopathological study of 28 tumours. Brain. 1979;102(2):289–320.

    Article  CAS  PubMed  Google Scholar 

  100. Chiechi MV, Smirniotopoulos JG, Mena H. Pineal parenchymal tumors: CT and MR features. J Comput Assist Tomogr. 1995;19(4):509–17.

    Article  CAS  PubMed  Google Scholar 

  101. Fakhran S, Escott EJ. Pineocytoma mimicking a pineal cyst on imaging: true diagnostic dilemma or a case of incomplete imaging? AJNR Am J Neuroradiol. 2008;29(1):159–63.

    Article  CAS  PubMed  Google Scholar 

  102. Reis F, Faria AV, Zanardi VA, Menezes JR, Cendes F, Queiroz LS. Neuroimaging in pineal tumors. J Neuroimaging. 2006;16(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  103. Satoh H, Uozumi T, Kiya K, Kurisu K, Arita K, Sumida M, Ikawa F. MRI of pineal region tumours: relationship between tumours and adjacent structures. Neuroradiology. 1995;37(8):624–30.

    Article  CAS  PubMed  Google Scholar 

  104. Sato K, Kubota T. Pathology of pineal parenchymal tumors. Prog Neurol Surg. 2009;23:12–25.

    Article  PubMed  Google Scholar 

  105. Lee JY, Wakabayashi T, Yoshida J. Management and survival of pineoblastoma: an analysis of 34 adults from the brain tumor registry of Japan. Neurol Med Chir (Tokyo). 2005;45(3):132–41.

    Article  Google Scholar 

  106. Numoto RT. Pineal parenchymal tumors: cell differentiation and prognosis. J Cancer Res Clin Oncol. 1994;120(11):683–90.

    Article  CAS  PubMed  Google Scholar 

  107. Coca S, Vaquero J, Escandon J, Moreno M, Peralba J, Rodriguez J. Immunohistochemical characterization of pineocytomas. Clin Neuropathol. 1992;11(6):298–303.

    CAS  PubMed  Google Scholar 

  108. Yamane Y, Mena H, Nakazato Y. Immunohistochemical characterization of pineal parenchymal tumors using novel monoclonal antibodies to the pineal body. Neuropathology. 2002;22(2):66–76.

    Article  PubMed  Google Scholar 

  109. Perentes E, Rubinstein LJ, Herman MM, Donoso LA. S-antigen immunoreactivity in human pineal glands and pineal parenchymal tumors. A monoclonal antibody study. Acta Neuropathol. 1986;71(3–4):224–7.

    Article  CAS  PubMed  Google Scholar 

  110. Fèvre-Montange M, Vasiljevic A, Frappaz D, Champier J, Szathmari A, Aubriot Lorton MH, Chapon F, Coulon A, Quintin Roué I, Delisle MB, Figarella-Branger D, Laquerrière A, Miquel C, Michiels JF, Péoch M, Polivka M, Fauchon F, Jouvet A. Utility of Ki67 immunostaining in the grading of pineal parenchymal tumours: a multicentre study. Neuropathol Appl Neurobiol. 2012;38(1):87–94.

    Article  PubMed  CAS  Google Scholar 

  111. Fang J, Luo L, Li J, Sun S, Yuan Y. Pathological and immunohistochemical study of pineal parenchymal tumors. Zhonghua Bing Li Xue Za Zhi. 2002;31(1):8–11.

    PubMed  Google Scholar 

  112. Ito T, Kanno H, Sato K, Oikawa M, Ozaki Y, Nakamura H, Terasaka S, Kobayashi H, Houkin K, Hatanaka K, Murata J, Tanaka S. Clinicopathologic study of pineal parenchymal tumors of intermediate differentiation. World Neurosurg. 2014;81(5–6):783–9.

    Article  PubMed  Google Scholar 

  113. Jouvet A, Fauchon F, Liberski P, Saint-Pierre G, Didier-Bazes M, Heitzmann A, Delisle MB, Biassette HA, Vincent S, Mikol J, Streichenberger N, Ahboucha S, Brisson C, Belin MF, Fèvre-Montange M. Papillary tumor of the pineal region. Am J Surg Pathol. 2003;27(4):505–12.

    Article  PubMed  Google Scholar 

  114. Jouvet A, Fèvre-Montange M, Besançon R, Derrington E, Saint-Pierre G, Belin MF, Pialat J, Lapras C. Structural and ultrastructural characteristics of human pineal gland, and pineal parenchymal tumors. Acta Neuropathol. 1994;88(4):334–48.

    Article  CAS  PubMed  Google Scholar 

  115. Rainho CA, Rogatto SR, de Moraes LC, Barbieri-Neto J. Cytogenetic study of a pineocytoma. Cancer Genet Cytogenet. 1992;64(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  116. Bello MJ, Rey JA, de Campos JM, Kusak ME. Chromosomal abnormalities in a pineocytoma. Cancer Genet Cytogenet. 1993;71(2):185–6.

    Article  CAS  PubMed  Google Scholar 

  117. Dario A, Cerati M, Taborelli M, Finzi G, Pozzi M, Dorizzi A. Cytogenetic and ultrastructural study of a pineocytoma case report. J Neurooncol. 2000;48(2):131–4.

    Article  CAS  PubMed  Google Scholar 

  118. Rickert CH, Simon R, Bergmann M, Dockhorn-Dworniczak B, Paulus W. Comparative genomic hybridization in pineal parenchymal tumors. Genes Chromosomes Cancer. 2001;30(1):99–104.

    Article  CAS  PubMed  Google Scholar 

  119. Kees UR, Spagnolo D, Hallam LA, Ford J, Ranford PR, Baker DL, Callen DF, Biegel JA. A new pineoblastoma cell line, PER-480, with der(10)t(10;17), der(16)t(1;16), and enhanced MYC expression in the absence of gene amplification. Cancer Genet Cytogenet. 1998;100(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  120. Kees UR, Biegel JA, Ford J, Ranford PR, Peroni SE, Hallam LA, Parmiter AH, Willoughby ML, Spagnolo D. Enhanced MYCN expression and isochromosome 17q in pineoblastoma cell lines. Genes Chromosomes Cancer. 1994;9(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  121. Sreekantaiah C, Jockin H, Brecher ML, Sandberg AA. Interstitial deletion of chromosome 11q in a pineoblastoma. Cancer Genet Cytogenet. 1989;39(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  122. Brown AE, Leibundgut K, Niggli FK, Betts DR. Cytogenetics of pineoblastoma: four new cases and a literature review. Cancer Genet Cytogenet. 2006;170(2):175–9.

    Article  CAS  PubMed  Google Scholar 

  123. Hasselblatt M, Blümcke I, Jeibmann A, Rickert CH, Jouvet A, van de Nes JA, Kuchelmeister K, Brunn A, Fevre-Montange M, Paulus W. Immunohistochemical profile and chromosomal imbalances in papillary tumours of the pineal region. Neuropathol Appl Neurobiol. 2006;32(3):278–83.

    Article  CAS  PubMed  Google Scholar 

  124. Plowman PN, Pizer B, Kingston JE. Pineal parenchymal tumours: II. On the aggressive behaviour of pineoblastoma in patients with an inherited mutation of the RB1 gene. Clin Oncol (R Coll Radiol). 2004;16(4):244–7.

    Article  CAS  Google Scholar 

  125. Fèvre-Montange M, Champier J, Szathmari A, Wierinckx A, Mottolese C, Guyotat J, Figarella-Branger D, Jouvet A, Lachuer J. Microarray analysis reveals differential gene expression patterns in tumors of the pineal region. J Neuropathol Exp Neurol. 2006;65(7):675–84.

    Article  PubMed  Google Scholar 

  126. Champier J, Jouvet A, Rey C, Brun V, Bernard A, Fèvre-Montange M. Identification of differentially expressed genes in human pineal parenchymal tumors by microarray analysis. Acta Neuropathol. 2005;109(3):306–13.

    Article  CAS  PubMed  Google Scholar 

  127. Miller S, Rogers HA, Lyon P, Rand V, Adamowicz-Brice M, Clifford SC, Hayden JT, Dyer S, Pfister S, Korshunov A, Brundler MA, Lowe J, Coyle B, Grundy RG. Genome-wide molecular characterization of central nervous system primitive neuroectodermal tumor and pineoblastoma. Neuro Oncol. 2011;13(8):866–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Goschzik T, Gessi M, Denkhaus D, Pietsch T. PTEN mutations and activation of the PI3K/Akt/mTOR signaling pathway in papillary tumors of the pineal region. J Neuropathol Exp Neurol. 2014;73(8):747–51.

    Article  CAS  PubMed  Google Scholar 

  129. Schild SE, Scheithauer BW, Haddock MG, Wong WW, Lyons MK, Marks LB, Norman MG, Burger PC. Histologically confirmed pineal tumors and other germ cell tumors of the brain. Cancer. 1996;78(12):2564–71. The long-term postsurgical prognosis of patients with pineoblastoma. Cancer. 2012;118(1):173–9.

    Google Scholar 

  130. Tate M, Sughrue ME, Rutkowski MJ, Kane AJ, Aranda D, McClinton L, Barani IJ, Parsa AT. The long-term postsurgical prognosis of patients with pineoblastoma. Cancer, 2012;118(1):173–9. doi: 10.1002/cncr.2630. Epub 2011 Jun 29.

  131. Duffner PK, Horowitz ME, Krischer JP, Burger PC, Cohen ME, Sanford RA, Friedman HS, Kun LE. The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro Oncol. 1999;1(2):152–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kleinschmidt-DeMasters BK, Lopes MBS, Prayson RA. An algorithmic approach to sellar region masses. Arch Patho Lab Med. 2015;139:356–72.

    Article  CAS  Google Scholar 

Download references

Abbreviations

ACTH Adrenocorticotropic hormone

CD24 Cluster of differentiation 24 or heat-stable antigen CD24 (HSA)

CGH Comparative genomic hybridization

CN Central neurocytoma

CRB3 Crumbs family member 3

CSF Cerebrospinal fluid

CT Computerized tomography

EVN Extraventricular neurocytoma

FAM129A Family with sequence similarity 129, member A

FISH Florescent in situ hybridization

FSH Follicle-stimulating hormone

GH Growth hormone

HIOMT Hydroxyindole O-methyltransferase

HOXD13 Homeobox D13

IDH Isocitrate dehydrogenase

IGF2 Insulin-like growth factor 2

LH Luteinizing hormone

LOH Loss of heterozygosity

MEN1 Multiple endocrine neoplasm type 1

miRNA microRNA

MRI Magnetic resonance image

NFP Neurofilament protein

NRG Neuregulin

NSE Neuron-specific enolase

OPN4 Melanopsin

PCDHGA3 Protocadherin gamma-A3

PDGF Platelet-derived growth factor

PNET Primitive neuroectodermal tumor

POU4F2 POU class 4 homeobox 2

PPT Pineal parenchymal tumor

PPTID Pineal parenchymal tumor of intermediate differentiation

PRAME Preferentially expressed antigen in melanoma

PTEN Phosphatase and tensin homolog

PTPR Papillary tumor of pineal region

PTTG Pituitary tumor transforming gene

Rb Retinoblastoma susceptibility gene

RGS16 Regulator of G-protein signaling 16

SOX4 SRY (sex determining region Y)-box 4

TEP1 Telomerase protein component 1

TERT Telomerase reverse transcriptase

TPH1 A subtype of tryptophan hydroxylase

TSG Tumor suppressor gene

UBE2C Ubiquitin-conjugating enzyme E2 C

WHO World Health Organization

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Frank Shan MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shan, Y.F., Wang, F., Ke, C., Yan, M. (2016). Neuroendocrine Neoplasms of the Brain. In: Nasir, A., Coppola, D. (eds) Neuroendocrine Tumors: Review of Pathology, Molecular and Therapeutic Advances. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3426-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3426-3_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3424-9

  • Online ISBN: 978-1-4939-3426-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics