Skip to main content

Renal Aquaporins in Health and Disease

  • Chapter
  • First Online:
Ion Channels and Transporters of Epithelia in Health and Disease

Abstract

Aquaporins (AQPs) are a large family of membrane proteins that act as semipermeable channels. The majority of AQPs are permeable to water, but a subset of the family can also transport glycerol, urea, and other small solutes. Currently, 13 AQP homologues have been identified in mammals, termed AQP0–12. These aquaporins are highly abundant in epithelial cells and non-epithelial cells in various tissues including the kidney, brain, liver, lungs, and salivary glands. In this chapter we focus on AQPs expressed in kidney epithelial cells. We summarize the current knowledge with respect to their localization and function within the kidney tubule and their critical role in mammalian water homeostasis. We describe a number of water balance disorders resulting from altered AQP function and provide an overview of some of the treatment strategies for these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu LA, Levy-Khademi F, Abdulhadi-Atwan M, Bosin E, Korner M, White PC, Zangen DH (2010) Autosomal recessive familial neurohypophyseal diabetes insipidus: onset in early infancy. Eur J Endocrinol 162:221–226

    Article  CAS  Google Scholar 

  • Alfadda TI, Saleh AM, Houillier P, Geibel JP (2014) Calcium-sensing receptor 20 years later. Am J Physiol Cell Physiol 307:C221–C231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen HM, Jackson RL, Winchester MD, Deck LV, Allon M (1989) Indomethacin in the treatment of lithium-induced nephrogenic diabetes insipidus. Arch Intern Med 149:1123–1126

    Article  CAS  PubMed  Google Scholar 

  • Alon U, Chan JC (1985) Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol 5:9–13

    Article  CAS  PubMed  Google Scholar 

  • Alon U, Wellons MD, Chan JC (1985) Hydrochlorothiazide, amiloride and tolmetin in the treatment of diabetes insipidus of Brattleboro rats. Med Biol 63:117–122

    CAS  PubMed  Google Scholar 

  • Ananthakrishnan S (2009) Diabetes insipidus in pregnancy: etiology, evaluation, and management. Endocr Pract 15:377–382

    Article  PubMed  Google Scholar 

  • Araujo ER, Seguro AC, Spichler A, Magaldi AJ, Volpini RA, De BT (2010) Acute kidney injury in human leptospirosis: an immunohistochemical study with pathophysiological correlation. Virchows Arch 456:367–375

    Article  CAS  PubMed  Google Scholar 

  • Arima H, Oiso Y (2010) Mechanisms underlying progressive polyuria in familial neurohypophysial diabetes insipidus. J Neuroendocrinol 22(7):754–757

    CAS  PubMed  Google Scholar 

  • Aronson D, Verbalis JG, Mueller M, Krum H (2011) Short- and long-term treatment of dilutional hyponatraemia with satavaptan, a selective arginine vasopressin V2-receptor antagonist: the DILIPO study. Eur J Heart Fail 13:327–336

    Article  CAS  PubMed  Google Scholar 

  • Arthus MF, Lonergan M, Crumley MJ, Naumova AK, Morin D, De Marco LA, Kaplan BS, Robertson GL, Sasaki S, Morgan K, Bichet DG, Fujiwara TM (2000) Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 11:1044–1054

    CAS  PubMed  Google Scholar 

  • Asahina Y, Izumi N, Enomoto N, Sasaki S, Fushimi K, Marumo F, Sato C (1995) Increased gene expression of water channel in cirrhotic rat kidneys. Hepatology 21:169–173

    Article  CAS  PubMed  Google Scholar 

  • Atochina-Vasserman EN, Biktasova A, Abramova E, Cheng DS, Polosukhin VV, Tanjore H, Takahashi S, Sonoda H, Foye L, Venkov C, Ryzhov SV, Novitskiy S, Shlonimskaya N, Ikeda M, Blackwell TS, Lawson WE, Gow AJ, Harris RC, Dikov MM, Tchekneva EE (2013) Aquaporin 11 insufficiency modulates kidney susceptibility to oxidative stress. Am J Physiol Renal Physiol 304:F1295–F1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badaut J, Fukuda AM, Jullienne A, Petry KG (2014) Aquaporin and brain diseases. Biochim Biophys Acta 1840:1554–1565

    Article  CAS  PubMed  Google Scholar 

  • Bagshaw SM, Langenberg C, Bellomo R (2006) Urinary biochemistry and microscopy in septic acute renal failure: a systematic review. Am J Kidney Dis 48:695–705

    Article  CAS  PubMed  Google Scholar 

  • Bankir L (2001) Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res 51:372–390

    Article  CAS  PubMed  Google Scholar 

  • Barak LS, Oakley RH, Laporte SA, Caron MG (2001) Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A 98:93–98

    Article  CAS  PubMed  Google Scholar 

  • Batlle DC, von Riotte AB, Gaviria M, Grupp M (1985) Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. N Engl J Med 312:408–414

    Article  CAS  PubMed  Google Scholar 

  • Baylis PH (1989) Regulation of vasopressin secretion. Baillieres Clin Endocrinol Metab 3:313–330

    Article  CAS  PubMed  Google Scholar 

  • Baylis PH (2003) The syndrome of inappropriate antidiuretic hormone secretion. Int J Biochem Cell Biol 35:1495–1499

    Article  CAS  PubMed  Google Scholar 

  • Beaser SB (1947) Renal excretory function and diet in diabetes insipidus. Am J Med Sci 213:441–449

    Article  CAS  PubMed  Google Scholar 

  • Bedford JJ, Weggery S, Ellis G, McDonald FJ, Joyce PR, Leader JP, Walker RJ (2008) Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride. Clin J Am Soc Nephrol 3:1324–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beitz E, Liu K, Ikeda M, Guggino WB, Agre P, Yasui M (2006) Determinants of AQP6 trafficking to intracellular sites versus the plasma membrane in transfected mammalian cells. Biol Cell 98:101–109

    Article  CAS  PubMed  Google Scholar 

  • Bernier V, Morello JP, Zarruk A, Debrand N, Salahpour A, Lonergan M, Arthus MF, Laperriere A, Brouard R, Bouvier M, Bichet DG (2006) Pharmacologic chaperones as a potential treatment for x-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 17:232–243

    Article  CAS  PubMed  Google Scholar 

  • Blalock T, Gerron G, Quiter E, Rudman D (1977) Role of diet in the management of vasopressin-responsive and -resistant diabetes insipidus. Am J Clin Nutr 30:1070–1076

    CAS  PubMed  Google Scholar 

  • Blaydon DC, Lind LK, Plagnol V, Linton KJ, Smith FJ, Wilson NJ, McLean WH, Munro CS, South AP, Leigh IM, O’Toole EA, Lundstrom A, Kelsell DP (2013) Mutations in AQP5, encoding a water-channel protein, cause autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma. Am J Hum Genet 93:330–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blount MA, Sands JM, Kent KJ, Smith TD, Price SR, Klein JD (2008) Candesartan augments compensatory changes in medullary transport proteins in the diabetic rat kidney. Am J Physiol Renal Physiol 294:F1448–F1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boone M, Deen PM (2008) Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch 456:1005–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boone M, Kortenoeven M, Robben JH, Deen PM (2010) Effect of the cGMP pathway on AQP2 expression and translocation: potential implications for nephrogenic diabetes insipidus. Nephrol Dial Transplant 25:48–54

    Article  CAS  PubMed  Google Scholar 

  • Boone M, Kortenoeven ML, Robben JH, Tamma G, Deen PM (2011) Counteracting vasopressin-mediated water reabsorption by ATP, dopamine, and phorbol esters: mechanisms of action. Am J Physiol Renal Physiol 300:F761–F771

    Article  CAS  PubMed  Google Scholar 

  • Boton R, Gaviria M, Batlle DC (1987) Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am J Kidney Dis 10:329–345

    Article  CAS  PubMed  Google Scholar 

  • Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, Brown D (2000) Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest 106:1115–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouley R, Pastor-Soler N, Cohen O, McLaughlin M, Breton S, Brown D (2005) Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra). Am J Physiol Renal Physiol 288:F1103–F1112

    Article  CAS  PubMed  Google Scholar 

  • Bouley R, Palomino Z, Tang SS, Nunes P, Kobori H, Lu HA, Shum WW, Sabolic I, Brown D, Ingelfinger JR, Jung FF (2009) Angiotensin II and hypertonicity modulate proximal tubular aquaporin 1 expression. Am J Physiol Renal Physiol 297:F1575–F1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brond L, Mullertz KM, Torp M, Nielsen J, Graebe M, Hadrup N, Nielsen S, Christensen S, Jonassen TE (2013) Congestive heart failure in rats is associated with increased collecting duct vasopressin sensitivity and vasopressin type 2 receptor reexternalization. Am J Physiol Renal Physiol 305:F1547–F1554

    Article  PubMed  CAS  Google Scholar 

  • Bustamante M, Hasler U, Kotova O, Chibalin AV, Mordasini D, Rousselot M, Vandewalle A, Martin PY, Feraille E (2005) Insulin potentiates AVP-induced AQP2 expression in cultured renal collecting duct principal cells. Am J Physiol Renal Physiol 288:F334–F344

    Article  CAS  PubMed  Google Scholar 

  • Bustamante M, Hasler U, Leroy V, de Seigneux S, Dimitrov M, Mordasini D, Rousselot M, Martin PY, Feraille E (2008) Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism. J Am Soc Nephrol 19:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabral PD, Herrera M (2012) Membrane-associated aquaporin-1 facilitates osmotically driven water flux across the basolateral membrane of the thick ascending limb. Am J Physiol Renal Physiol 303:F621–F629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calamita G, Gena P, Meleleo D, Ferri D, Svelto M (2006) Water permeability of rat liver mitochondria: a biophysical study. Biochim Biophys Acta 1758:1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Canfield MC, Tamarappoo BK, Moses AM, Verkman AS, Holtzman EJ (1997) Identification and characterization of aquaporin-2 water channel mutations causing nephrogenic diabetes insipidus with partial vasopressin response. Hum Mol Genet 6:1865–1871

    Article  CAS  PubMed  Google Scholar 

  • Carpentier E, Greenbaum LA, Rochdi D, Abrol R, Goddard WA III, Bichet DG, Bouvier M (2012) Identification and characterization of an activating F229V substitution in the V2 vasopressin receptor in an infant with NSIAD. J Am Soc Nephrol 23:1635–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesar KR, Magaldi AJ (1999) Thiazide induces water absorption in the inner medullary collecting duct of normal and Brattleboro rats. Am J Physiol 277:F756–F760

    CAS  PubMed  Google Scholar 

  • Cesar KR, Romero EC, de Braganca AC, Blanco RM, Abreu PA, Magaldi AJ (2012) Renal involvement in leptospirosis: the effect of glycolipoprotein on renal water absorption. PLoS One 7, e37625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Rice W, Gu Z, Li J, Huang J, Brenner MB, Van HA, Xiong J, Gundersen GG, Norman JC, Hsu VW, Fenton RA, Brown D, Lu HA (2012) Aquaporin 2 promotes cell migration and epithelial morphogenesis. J Am Soc Nephrol 23:1506–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Zhang H, Lee HL, Park JM (2004) Cyclooxygenase-2 inhibitor preserves medullary aquaporin-2 expression and prevents polyuria after ureteral obstruction. J Urol 172:2387–2390

    Article  CAS  PubMed  Google Scholar 

  • Chou CL, Ma TH, Yang BX, Knepper MA, Verkman S (1998) Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am J Physiol 43:C549–C554

    Google Scholar 

  • Chou CL, Knepper MA, Hoek AN, Brown D, Yang B, Ma T, Verkman AS (1999) Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice. J Clin Invest 103:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen BM, Zelenina M, Aperia A, Nielsen S (2000) Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am J Physiol Renal Physiol 278:F29–F42

    CAS  PubMed  Google Scholar 

  • Christensen BM, Wang W, Frokiaer J, Nielsen S (2003) Axial heterogeneity in basolateral AQP2 localization in rat kidney: effect of vasopressin. Am J Physiol Renal Physiol 284:F701–F717

    Article  CAS  PubMed  Google Scholar 

  • Christensen BM, Marples D, Kim YH, Wang W, Frokiaer J, Nielsen S (2004) Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am J Physiol Cell Physiol 286:C952–C964

    Article  CAS  PubMed  Google Scholar 

  • Christensen BM, Kim YH, Kwon TH, Nielsen S (2006) Lithium treatment induces a marked proliferation of primarily principal cells in rat kidney inner medullary collecting duct. Am J Physiol Renal Physiol 291:F39–F48

    Article  CAS  PubMed  Google Scholar 

  • Christensen BM, Zuber AM, Loffing J, Stehle JC, Deen PM, Rossier BC, Hummler E (2011) alphaENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus. J Am Soc Nephrol 22:253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung SH, Jun DW, Kim KT, Chae JD, Park EK, Son BK, Kim SH, Jo YJ, Park YS (2010) Aquaporin-2 urinary excretion in cirrhosis: relationship to vasopressin and nitric oxide. Dig Dis Sci 55:1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Coleman RA, Wu DC, Liu J, Wade JB (2000) Expression of aquaporins in the renal connecting tubule. Am J Physiol Renal Physiol 279:F874–F883

    CAS  PubMed  Google Scholar 

  • Crawford JD, Kennedy GC, HILL LE (1960) Clinical results of treatment of diabetes insipidus with drugs of the chlorothiazide series. N Engl J Med 262:737–743

    Article  CAS  PubMed  Google Scholar 

  • Danilovic A, Lopes RI, Sanches TR, Shimizu MH, Oshiro FM, Andrade L, Denes FT, Seguro AC (2012) Atorvastatin prevents the downregulation of aquaporin-2 receptor after bilateral ureteral obstruction and protects renal function in a rat model. Urology 80:485.e15–485.e20

    Article  Google Scholar 

  • De Groot T, Alsady M, Jaklofsky M, Otte-Holler I, Baumgarten R, Giles RH, Deen PM (2014) Lithium causes G2 arrest of renal principal cells. J Am Soc Nephrol 25:501–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Mattia F, Savelkoul PJ, Bichet DG, Kamsteeg EJ, Konings IB, Marr N, Arthus MF, Lonergan M, van Os CH, van der Sluijs P, Robertson G, Deen PM (2004) A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L. Hum Mol Genet 13:3045–3056

    Article  PubMed  CAS  Google Scholar 

  • De Mattia F, Savelkoul PJ, Kamsteeg EJ, Konings IB, van der Sluijs P, Mallmann R, Oksche A, Deen PM (2005) Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J Am Soc Nephrol 16:2872–2880

    Article  PubMed  CAS  Google Scholar 

  • Decaux G, Vandergheynst F, Bouko Y, Parma J, Vassart G, Vilain C (2007) Nephrogenic syndrome of inappropriate antidiuresis in adults: high phenotypic variability in men and women from a large pedigree. J Am Soc Nephrol 18:606–612

    Article  CAS  PubMed  Google Scholar 

  • Deen PMT, van Aubel RA, van Lieburg AF, van Os CH (1996) Urinary content of aquaporin 1 and 2 in nephrogenic diabetes insipidus. J Am Soc Nephrol 7:836–841

    CAS  PubMed  Google Scholar 

  • Delporte C (2014) Aquaporins in salivary glands and pancreas. Biochim Biophys Acta 1840:1524–1532

    Article  CAS  PubMed  Google Scholar 

  • Di Iorgi N, Napoli F, Allegri AE, Olivieri I, Bertelli E, Gallizia A, Rossi A, Maghnie M (2012) Diabetes insipidus–diagnosis and management. Horm Res Paediatr 77:69–84

    Article  CAS  PubMed  Google Scholar 

  • Digiovanni SR, Nielsen S, Christensen EI, Knepper MA (1994) Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci U S A 91:8984–8988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earm JH, Christensen BM, Frokiaer J, Marples D, Han JS, Knepper MA, Nielsen S (1998) Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats. J Am Soc Nephrol 9:2181–2193

    CAS  PubMed  Google Scholar 

  • Ecelbarger CA, Terris J, Frindt G, Echevarria M, Marples D, Nielsen S, Knepper MA (1995) Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol 38:F663–F672

    Google Scholar 

  • Elhassan EA, Schrier RW (2011) Hyponatremia: diagnosis, complications, and management including V2 receptor antagonists. Curr Opin Nephrol Hypertens 20:161–168

    Article  CAS  PubMed  Google Scholar 

  • Elkjaer ML, Nejsum LN, Gresz V, Kwon TH, Jensen UB, Frokiaer J, Nielsen S (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol 281:F1047–F1057

    Article  CAS  PubMed  Google Scholar 

  • Elkjaer ML, Kwon TH, Wang W, Nielsen J, Knepper MA, Frokiaer J, Nielsen S (2002) Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats. Am J Physiol Renal Physiol 283:F1376–F1388

    Article  CAS  PubMed  Google Scholar 

  • Esteva-Font C, Baccaro ME, Fernandez-Llama P, Sans L, Guevara M, Ars E, Jimenez W, Arroyo V, Ballarin JA, Gines P (2006) Aquaporin-1 and aquaporin-2 urinary excretion in cirrhosis: relationship with ascites and hepatorenal syndrome. Hepatology 44:1555–1563

    Article  CAS  PubMed  Google Scholar 

  • Farres MT, Ronco P, Saadoun D, Remy P, Vincent F, Khalil A, Le Blanche AF (2003) Chronic lithium nephropathy: MR imaging for diagnosis. Radiology 229:570–574

    Article  PubMed  Google Scholar 

  • Feldman HA, Singer I (1974) Comparative effects of tetracyclines on water flow across toad urinary bladders. J Pharmacol Exp Ther 190:358–364

    CAS  PubMed  Google Scholar 

  • Feldman BJ, Rosenthal SM, Vargas GA, Fenwick RG, Huang EA, Matsuda-Abedini M, Lustig RH, Mathias RS, Portale AA, Miller WL, Gitelman SE (2005) Nephrogenic syndrome of inappropriate antidiuresis. N Engl J Med 352:1884–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton RA, Brond L, Nielsen S, Praetorius J (2007) Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. Am J Physiol Renal Physiol 293:F748–F760

    Article  CAS  PubMed  Google Scholar 

  • Fenton RA, Moeller HB, Hoffert JD, Yu MJ, Nielsen S, Knepper MA (2008) Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci U S A 105:3134–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton RA, Moeller HB, Zelenina M, Snaebjornsson MT, Holen T, MacAulay N (2010) Differential water permeability and regulation of three aquaporin 4 isoforms. Cell Mol Life Sci 67:829–840

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Llama P, Turner R, Dibona G, Knepper MA (1999) Renal expression of aquaporins in liver cirrhosis induced by chronic common bile duct ligation in rats. J Am Soc Nephrol 10:1950–1957

    CAS  PubMed  Google Scholar 

  • Fernandez-Llama P, Jimenez W, Bosch-Marce M, Arroyo V, Nielsen S, Knepper MA (2000) Dysregulation of renal aquaporins and Na-Cl cotransporter in CCl4-induced cirrhosis. Kidney Int 58:216–228

    Article  CAS  PubMed  Google Scholar 

  • Flamion B, Spring KR (1990) Water permeability of apical and basolateral cell membranes of rat inner medullary collecting duct. Am J Physiol 259:F986–F999

    CAS  PubMed  Google Scholar 

  • Forrest JN Jr, Cohen AD, Torretti J, Himmelhoch JM, Epstein FH (1974) On the mechanism of lithium-induced diabetes insipidus in man and the rat. J Clin Invest 53:1115–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest JN Jr, Cox M, Hong C, Morrison G, Bia M, Singer I (1978) Superiority of demeclocycline over lithium in the treatment of chronic syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med 298:173–177

    Article  PubMed  Google Scholar 

  • Fotiadis D, Hasler L, Muller DJ, Stahlberg H, Kistler J, Engel A (2000) Surface tongue-and-groove contours on lens MIP facilitate cell-to-cell adherence. J Mol Biol 300:779–789

    Article  CAS  PubMed  Google Scholar 

  • Frokiaer J, Marples D, Knepper MA, Nielsen S (1996) Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol 39:F657–F668

    Google Scholar 

  • Frokiaer J, Christensen BM, Marples D, Djurhuus JC, Jensen UB, Knepper MA, Nielsen S (1997) Downregulation of aquaporin-2 parallels changes in renal water excretion in unilateral ureteral obstruction. Am J Physiol 42:F213–F223

    Google Scholar 

  • Fujisawa G, Ishikawa S, Tsuboi Y, Okada K, Saito T (1993) Therapeutic efficacy of non-peptide ADH antagonist OPC-31260 in SIADH rats. Kidney Int 44:19–23

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Ishikawa S, Sasaki S, Fujisawa G, Fushimi K, Marumo F, Saito T (1995) Role of water channel AQP-CD in water retention in SIADH and cirrhotic rats. Am J Physiol 38:F926–F931

    Google Scholar 

  • Furman CS, Gorelick-Feldman DA, Davidson KG, Yasumura T, Neely JD, Agre P, Rash JE (2003) Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc Natl Acad Sci U S A 100:13609–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  CAS  PubMed  Google Scholar 

  • Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800–14804

    Article  CAS  PubMed  Google Scholar 

  • Ghali JK, Koren MJ, Taylor JR, Brooks-Asplund E, Fan K, Long WA, Smith N (2006) Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatremia. J Clin Endocrinol Metab 91:2145–2152

    Article  CAS  PubMed  Google Scholar 

  • Gill JR Jr, Bartter FC (1961) On the impairment of renal concentrating ability in prolonged hypercalcemia and hypercalciuria in man. J Clin Invest 40:716–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gines P, Wong F, Watson H, Milutinovic S, del Arbol LR, Olteanu D (2008) Effects of satavaptan, a selective vasopressin V(2) receptor antagonist, on ascites and serum sodium in cirrhosis with hyponatremia: a randomized trial. Hepatology 48:204–213

    Article  CAS  PubMed  Google Scholar 

  • Goubau C, Jaeken J, Levtchenko EN, Thys C, Di MM, Martens GA, Gerlo E, De VR, Buyse GM, Goemans N, Van GC, Freson K (2013) Homozygosity for aquaporin 7 G264V in three unrelated children with hyperglyceroluria and a mild platelet secretion defect. Genet Med 15:55–63

    Article  CAS  PubMed  Google Scholar 

  • Grinevich V, Knepper MA, Verbalis J, Reyes I, Aguilera G (2004) Acute endotoxemia in rats induces down-regulation of V2 vasopressin receptors and aquaporin-2 content in the kidney medulla. Kidney Int 65:54–62

    Article  CAS  PubMed  Google Scholar 

  • Hadi HA, Mashini IS, Devoe LD (1985) Diabetes insipidus during pregnancy complicated by preeclampsia. A case report. J Reprod Med 30:206–208

    CAS  PubMed  Google Scholar 

  • Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasler U, Mordasini D, Bianchi M, Vandewalle A, Feraille E, Martin PY (2003) Dual influence of aldosterone on AQP2 expression in cultured renal collecting duct principal cells. J Biol Chem 278:21639–21648

    Article  CAS  PubMed  Google Scholar 

  • Hasler U, Vinciguerra M, Vandewalle A, Martin PY, Feraille E (2005) Dual effects of hypertonicity on aquaporin-2 expression in cultured renal collecting duct principal cells. J Am Soc Nephrol 16:1571–1582

    Article  CAS  PubMed  Google Scholar 

  • Hasler U, Leroy V, Jeon US, Bouley R, Dimitrov M, Kim JA, Brown D, Kwon HM, Martin PY, Feraille E (2008) NF-kappaB modulates aquaporin-2 transcription in renal collecting duct principal cells. J Biol Chem 283:28095–28105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert RL, Jacobson HR, Breyer MD (1990) PGE2 inhibits AVP-induced water flow in cortical collecting ducts by protein kinase C activation. Am J Physiol 259:F318–F325

    CAS  PubMed  Google Scholar 

  • Hirji MR, Mucklow JC (1991) Transepithelial water movement in response to carbamazepine, chlorpropamide and demeclocycline in toad urinary bladder. Br J Pharmacol 104:550–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocherl K, Schmidt C, Kurt B, Bucher M (2010) Inhibition of NF-kappaB ameliorates sepsis-induced downregulation of aquaporin-2/V2 receptor expression and acute renal failure in vivo. Am J Physiol Renal Physiol 298:F196–F204

    Article  PubMed  CAS  Google Scholar 

  • Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A 103:7159–7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffert JD, Nielsen J, Yu MJ, Pisitkun T, Schleicher SM, Nielsen S, Knepper MA (2007) Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Renal Physiol 292:F691–F700

    Article  CAS  PubMed  Google Scholar 

  • Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA (2008) Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem 283:24617–24627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffert JD, Pisitkun T, Saeed F, Song JH, Chou CL, Knepper MA (2012) Dynamics of the G protein-coupled vasopressin V2 receptor signaling network revealed by quantitative phosphoproteomics. Mol Cell Proteomics 11:M111

    Article  PubMed  CAS  Google Scholar 

  • Holm LM, Jahn TP, Moller AL, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T (2005) NH3 and NH4 + permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch 450:415–428

    Article  CAS  PubMed  Google Scholar 

  • Hoorn EJ, Monserez DA, Fenton RA, Overdevest I, Apperloo AJ, Zietse R, Hardillo JA (2014) Olfactory neuroblastoma with hyponatremia. J Clin Oncol. doi:10.1200/JCO.2013.49.1464

    PubMed  Google Scholar 

  • Hozawa S, Holtzman EJ, Ausiello DA (1996) cAMP motifs regulating transcription in the aquaporin 2 gene. Am J Physiol 39:C1695–C1702

    Google Scholar 

  • Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells: requirement of pore-lining residue threonine-63. J Biol Chem 277:39873–39879

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, Muta K, Matsushita W, Uechi T, Matsuzaki T, Kenmochi N, Takata K, Sasaki S, Ito K, Ishibashi K (2011) The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem 286:3342–3350

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Sohara E, Kobayashi K, Chiga M, Rai T, Ishibashi K, Horie S, Su X, Zhou J, Sasaki S, Uchida S (2014) Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model. J Am Soc Nephrol. doi:10.1681/ASN.2013060614

    Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91:6269–6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997a) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K, Yamamoto T, Kuwahara M, Marumo F (1997b) Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am J Physiol 41:F235–F241

    Google Scholar 

  • Ishibashi K, Imai M, Sasaki S (2000) Cellular localization of aquaporin 7 in the rat kidney. Exp Nephrol 8:252–257

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta 1576:335–340

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Hara S, Kondo S (2009) Aquaporin water channels in mammals. Clin Exp Nephrol 13:107–117

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Tanaka Y, Morishita Y (2014) The role of mammalian superaquaporins inside the cell. Biochim Biophys Acta 1840:1507–1512

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Jameson JL (1997) Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus – cellular toxicity caused by the accumulation of mutant vasopressin precursors within the endoplasmic reticulum. J Clin Invest 99:1897–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Yu RN, Jameson JL (1999) Mutant vasopressin precursors that cause autosomal dominant neurohypophyseal diabetes insipidus retain dimerization and impair the secretion of wild-type proteins. J Biol Chem 274:9029–9037

    Article  CAS  PubMed  Google Scholar 

  • Ivarsen P, Frokiaer J, Aagaard NK, Hansen EF, Bendtsen F, Nielsen S, Vilstrup H (2003) Increased urinary excretion of aquaporin 2 in patients with liver cirrhosis. Gut 52:1194–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyasere O, Xu G, Harris K (2012) Urinary tract obstruction. Br J Hosp Med (Lond) 73:696–700

    Article  Google Scholar 

  • Jakobsson B, Berg U (1994) Effect of hydrochlorothiazide and indomethacin treatment on renal function in nephrogenic diabetes insipidus. Acta Paediatr 83:522–525

    Article  CAS  PubMed  Google Scholar 

  • Jean-Alphonse F, Perkovska S, Frantz MC, Durroux T, Mejean C, Morin D, Loison S, Bonnet D, Hibert M, Mouillac B, Mendre C (2009) Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 20:2190–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen AM, Bae EH, Norregaard R, Wang G, Nielsen S, Schweer H, Kim SW, Frokiaer J (2010) Cyclooxygenase 2 inhibition exacerbates AQP2 and pAQP2 downregulation independently of V2 receptor abundance in the postobstructed kidney. Am J Physiol Renal Physiol 298:F941–F950

    Article  CAS  PubMed  Google Scholar 

  • Jeon US, Han KH, Park SH, Lee SD, Sheen MR, Jung JY, Kim WY, Sands JM, Kim J, Kwon HM (2007) Downregulation of renal TonEBP in hypokalemic rats. Am J Physiol Renal Physiol 293:F408–F415

    Article  CAS  PubMed  Google Scholar 

  • Jochberger S, Dorler J, Luckner G, Mayr VD, Wenzel V, Ulmer H, Morgenthaler NG, Hasibeder WR, Dunser MW (2009) The vasopressin and copeptin response to infection, severe sepsis, and septic shock. Crit Care Med 37:476–482

    Article  CAS  PubMed  Google Scholar 

  • Jung JY, Madsen KM, Han KH, Yang CW, Knepper MA, Sands JM, Kim J (2003) Expression of urea transporters in potassium-depleted mouse kidney. Am J Physiol Renal Physiol 285:F1210–F1224

    Article  CAS  PubMed  Google Scholar 

  • Kamsteeg EJ, Wormhoudt TA, Rijss JPL, van Os CH, Deen PMT (1999) An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J 18:2394–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamsteeg EJ, Heijnen I, van Os CH, Deen PMT (2000) The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 151:919–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs P, Klumperman J, Deen PM (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci U S A 103:18344–18349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsura T, Ausiello DA, Brown D (1996) Direct demonstration of aquaporin-2 water channel recycling in stably transfected LLC-PK1 epithelial cells. Am J Physiol 39:F548–F553

    Google Scholar 

  • Katsura T, Gustafson CE, Ausiello DA, Brown D (1997) Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol 41:F816–F822

    Google Scholar 

  • Katz VL, Bowes WA Jr (1987) Transient diabetes insipidus and preeclampsia. South Med J 80:524–525

    Article  CAS  PubMed  Google Scholar 

  • Kellenberger S, Gautschi I, Schild L (1999) A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. Proc Natl Acad Sci U S A 96:4170–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Sands JM, Klein JD (2004a) Role of vasopressin in diabetes mellitus-induced changes in medullary transport proteins involved in urine concentration in Brattleboro rats. Am J Physiol Renal Physiol 286:F760–F766

    Article  CAS  PubMed  Google Scholar 

  • Kim GH, Lee JW, Oh YK, Chang HR, Joo KW, Na KY, Earm JH, Knepper MA, Han JS (2004b) Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol 15:2836–2843

    Article  CAS  PubMed  Google Scholar 

  • Kim GH, Choi NW, Jung JY, Song JH, Lee CH, Kang CM, Knepper MA (2008) Treating lithium-induced nephrogenic diabetes insipidus with a COX-2 inhibitor improves polyuria via upregulation of AQP2 and NKCC2. Am J Physiol Renal Physiol 294:F702–F709

    Article  CAS  PubMed  Google Scholar 

  • King LS, Choi M, Fernandez PC, Cartron JP, Agre P (2001) Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N Engl J Med 345:175–179

    Article  CAS  PubMed  Google Scholar 

  • Kirchlechner V, Koller DY, Seidl R, Waldhauser F (1999) Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. Arch Dis Child 80:548–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klahr S, Harris K, Purkerson ML (1988) Effects of obstruction on renal functions. Pediatr Nephrol 2:34–42

    Article  CAS  PubMed  Google Scholar 

  • Klein JD, Kozlowski S, Antoun TA, Sands JM (2006) Adrenalectomy blocks the compensatory increases in UT-A1 and AQP2 in diabetic rat kidney. J Membr Biol 212:139–144

    Article  CAS  PubMed  Google Scholar 

  • Knepper MA, Packer R, Good DW (1989) Ammonium transport in the kidney. Physiol Rev 69:179–249

    CAS  PubMed  Google Scholar 

  • Ko SB, Uchida S, Naruse S, Kuwahara M, Ishibashi K, Marumo F, Hayakawa T, Sasaki S (1999) Cloning and functional expression of rAOP9L a new member of aquaporin family from rat liver. Biochem Mol Biol Int 47:309–318

    CAS  PubMed  Google Scholar 

  • Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H, Matsuda M, Maeda N, Nagaretani H, Kihara S, Kurachi Y, Nakamura T, Funahashi T, Matsuzawa Y (2002) Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur J Biochem 269:1814–1826

    Article  CAS  PubMed  Google Scholar 

  • Konoshita T, Kuroda M, Kawane T, Koni I, Miyamori I, Tofuku Y, Mabuchi H, Takeda R (2004) Treatment of congenital nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride in an adult patient. Horm Res 61:63–67

    CAS  PubMed  Google Scholar 

  • Kortenoeven ML, Li Y, Shaw S, Gaeggeler HP, Rossier BC, Wetzels JF, Deen PM (2009) Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int 76:44–53

    Article  CAS  PubMed  Google Scholar 

  • Kortenoeven ML, Schweer H, Cox R, Wetzels JF, Deen PM (2012a) Lithium reduces aquaporin-2 transcription independent of prostaglandins. Am J Physiol Cell Physiol 302:C131–C140

    Article  CAS  PubMed  Google Scholar 

  • Kortenoeven ML, Trimpert C, van den Brand M, Li Y, Wetzels JF, Deen PM (2012b) In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac. Am J Physiol Renal Physiol 302:F1395–F1401

    Article  CAS  PubMed  Google Scholar 

  • Kortenoeven ML, Pedersen NB, Miller RL, Rojek A, Fenton RA (2013a) Genetic ablation of aquaporin-2 in the mouse connecting tubules results in defective renal water handling. J Physiol 591:2205–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kortenoeven ML, Sinke AP, Hadrup N, Trimpert C, Wetzels JF, Fenton RA, Deen PM (2013b) Demeclocycline attenuates hyponatremia by reducing aquaporin-2 expression in the renal inner medulla. Am J Physiol Renal Physiol 305:F1705–F1718

    Article  CAS  PubMed  Google Scholar 

  • Kosten TR, Forrest JN (1986) Treatment of severe lithium-induced polyuria with amiloride. Am J Psychiatry 143:1563–1568

    Article  CAS  PubMed  Google Scholar 

  • Kotnik P, Nielsen J, Kwon TH, Krzisnik C, Frokiaer J, Nielsen S (2005) Altered expression of COX-1, COX-2, and mPGES in rats with nephrogenic and central diabetes insipidus. Am J Physiol Renal Physiol 288:F1053–F1068

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara M, Fushimi K, Terada Y, Bai L, Marumo F, Sasaki S (1995) cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. J Biol Chem 270:10384–10387

    Article  CAS  PubMed  Google Scholar 

  • Kwon TH, Frøkiaer J, Fernández-Llama P, Knepper MA, Nielsen S (1999) Reduced abundance of aquaporins in rats with bilateral ischemia-induced acute renal failure: prevention by alpha-MSH. Am J Physiol 277:F413–F427

    CAS  PubMed  Google Scholar 

  • Kwon TH, Laursen UH, Marples D, Maunsbach AB, Knepper MA, Frokiaer J, Nielsen S (2000) Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 279:F552–F564

    CAS  PubMed  Google Scholar 

  • Land H, Schutz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 295:299–303

    Article  CAS  PubMed  Google Scholar 

  • Lassiter WE, Gottschalk CW, Mylle M (1961) Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am J Physiol 200:1139–1147

    CAS  PubMed  Google Scholar 

  • Laursen UH, Pihakaski-Maunsbach K, Kwon TH, Ostergaard JE, Nielsen S, Maunsbach AB (2004) Changes of rat kidney AQP2 and Na, K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus. Nephron Exp Nephrol 97:e1–e16

    Article  CAS  PubMed  Google Scholar 

  • Lee WK, Bork U, Gholamrezaei F, Thevenod F (2005) Cd(2+)-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca2+ uniporter. Am J Physiol Renal Physiol 288:F27–F39

    Article  CAS  PubMed  Google Scholar 

  • Levi M, Peterson L, Berl T (1983) Mechanism of concentrating defect in hypercalcemia. Role of polydipsia and prostaglandins. Kidney Int 23:489–497

    Article  CAS  PubMed  Google Scholar 

  • Leviel F, Hübner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, Hassan H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D (2010) The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120:1627–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levtchenko EN, Monnens LA (2010) Nephrogenic syndrome of inappropriate antidiuresis. Nephrol Dial Transplant 25:2839–2843

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang W, Kwon TH, Isikay L, Wen JG, Marples D, Djurhuus JC, Stockwell A, Knepper MA, Nielsen S, Frokiaer J (2001) Downregulation of AQP1, -2, and -3 after ureteral obstruction is associated with a long-term urine-concentrating defect. Am J Physiol Renal Physiol 281:F163–F171

    CAS  PubMed  Google Scholar 

  • Li C, Wang W, Knepper MA, Nielsen S, Frokiar J (2003a) Downregulation of renal aquaporins in response to unilateral ureteral obstruction. Am J Physiol Renal Physiol 284:F1066–F1079

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang W, Kwon TH, Knepper MA, Nielsen S, Frokiaer J (2003b) Altered expression of major renal Na transporters in rats with bilateral ureteral obstruction and release of obstruction. Am J Physiol Renal Physiol 285:F889–F901

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang W, Kwon TH, Knepper MA, Nielsen S, Frokiaer J (2003c) Altered expression of major renal Na transporters in rats with unilateral ureteral obstruction. Am J Physiol Renal Physiol 284:F155–F166

    Article  CAS  PubMed  Google Scholar 

  • Li C, Klein JD, Wang W, Knepper MA, Nielsen S, Sands JM, Frokiaer J (2004) Altered expression of urea transporters in response to ureteral obstruction. Am J Physiol Renal Physiol 286:F1154–F1162

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Shaw S, Kamsteeg EJ, Vandewalle A, Deen PM (2006) Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol 17:1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Li JH, Chou CL, Li B, Gavrilova O, Eisner C, Schnermann J, Anderson SA, Deng CX, Knepper MA, Wess J (2009) A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J Clin Invest 119:3115–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhang Y, Bouley R, Chen Y, Matsuzaki T, Nunes P, Hasler U, Brown D, Lu HA (2011) Simvastatin enhances aquaporin-2 surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase. Am J Physiol Renal Physiol 301:F309–F318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin QQ, Lin R, Ji QL, Zhang JY, Wang WR, Yang LN, Zhang KF (2011) Effect of exercise training on renal function and renal aquaporin-2 expression in rats with chronic heart failure. Clin Exp Pharmacol Physiol 38(3):179–185

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99:6053–6058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Nagase H, Huang CG, Calamita G, Agre P (2006) Purification and functional characterization of aquaporin-8. Biol Cell 98:153–161

    Article  CAS  PubMed  Google Scholar 

  • Lolait SJ, O’Carroll AM, McBride OW, Konig M, Morel A, Brownstein MJ (1992) Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357:336–339

    Article  CAS  PubMed  Google Scholar 

  • Los EL, Deen PM, Robben JH (2010) Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus. J Neuroendocrinol 22:393–399

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Peissel B, Babakhanlou H, Pavlova A, Geng L, Fan X, Larson C, Brent G, Zhou J (1997) Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nat Genet 17:179–181

    Article  CAS  PubMed  Google Scholar 

  • Ma TH, Yang BX, Kuo WL, Verkman AS (1996) cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: Evidence for a gene cluster of aquaporins at chromosome locus 12q13. Genomics 35:543–550

    Article  CAS  PubMed  Google Scholar 

  • Ma TH, Yang BX, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1997) Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 100:957–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma TH, Yang BX, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1998) Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–4299

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97:4386–4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madeira A, Fernandez-Veledo S, Camps M, Zorzano A, Moura TF, Ceperuelo-Mallafre V, Vendrell J, Soveral G (2014) Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity. doi:10.1002/oby.20792

    PubMed  Google Scholar 

  • Magaldi AJ, Yasuda PN, Kudo LH, Seguro AC, Rocha AS (1992) Renal involvement in leptospirosis: a pathophysiologic study. Nephron 62:332–339

    Article  CAS  PubMed  Google Scholar 

  • Maletkovic J, Drexler A (2013) Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Endocrinol Metab Clin North Am 42:677–695

    Article  PubMed  Google Scholar 

  • Mancinelli R, La Rovere RM, Fulle S, Miscia S, Marchisio M, Pierdomenico L, Lanuti P, Procino G, Barbieri C, Svelto M, Fano-Illic G, Pietrangelo T (2014) Extracellular GTP is a potent water-transport regulator via aquaporin 5 plasma-membrane insertion in M1-CCD epithelial cortical collecting duct cells. Cell Physiol Biochem 33:731–746

    Article  CAS  PubMed  Google Scholar 

  • Manji HK, Moore GJ, Chen G (2001) Bipolar disorder: leads from the molecular and cellular mechanisms of action of mood stabilizers. Br J Psychiatry Suppl 41:s107–s119

    Article  CAS  PubMed  Google Scholar 

  • Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S (1995) Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 95:1838–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marples D, Frokiaer J, Dorup J, Knepper MA, Nielsen S (1996) Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest 97:1960–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marr N, Kamsteeg EJ, Van Raak M, van Os CH, Deen PMT (2001) Functionality of aquaporin-2 missense mutants in recessive nephrogenic diabetes insipidus. Pflugers Arch 442:73–77

    Article  CAS  PubMed  Google Scholar 

  • Marr N, Bichet DG, Hoefs S, Savelkoul PJ, Konings IB, De Mattia F, Graat MP, Arthus MF, Lonergan M, Fujiwara TM, Knoers NVAM, Landau D, Balfe WJ, Oksche A, Rosenthal W, Muller D, van Os CH, Deen PMT (2002) Cell-biologic and functional analyses of five new aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus. J Am Soc Nephrol 13:2267–2277

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Miyazaki H, Fujii T, Hashimoto M (1989) Binding of sulfonamides to erythrocytes and their components. Chem Pharm Bull (Tokyo) 37:1913–1915

    Article  CAS  Google Scholar 

  • Matsumura Y, Uchida S, Rai T, Sasaki S, Marumo F (1997) Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol 8:861–867

    CAS  PubMed  Google Scholar 

  • Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A 107:15681–15686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobasheri A, Marples D, Young IS, Floyd RV, Moskaluk CA, Frigeri A (2007) Distribution of the AQP4 water channel in normal human tissues: protein and tissue microarrays reveal expression in several new anatomical locations, including the prostate gland and seminal vesicles. Channels (Austin) 1:29–38

    Article  Google Scholar 

  • Moe SE, Sorbo JG, Sogaard R, Zeuthen T, Petter OO, Holen T (2008) New isoforms of rat Aquaporin-4. Genomics 91:367–377

    Article  CAS  PubMed  Google Scholar 

  • Moeller HB, Knepper MA, Fenton RA (2009) Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney Int 75:295–303

    Article  CAS  PubMed  Google Scholar 

  • Moeller HB, Praetorius J, Rutzler MR, Fenton RA (2010) Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc Natl Acad Sci U S A 107:424–429

    Article  CAS  PubMed  Google Scholar 

  • Moeller HB, Olesen ET, Fenton RA (2011) Regulation of the water channel aquaporin-2 by posttranslational modification. Am J Physiol Renal Physiol 300:F1062–F1073

    Article  CAS  PubMed  Google Scholar 

  • Moeller HB, Aroankins TS, Slengerik-Hansen J, Pisitkun T, Fenton RA (2014) Phosphorylation and ubiquitylation are opposing processes that regulate endocytosis of the water channel aquaporin-2. J Cell Sci 127:3174–3183

    Article  CAS  PubMed  Google Scholar 

  • Molinas SM, Trumper L, Marinelli RA (2012) Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis. Am J Physiol Renal Physiol 303:F458–F466

    Article  CAS  PubMed  Google Scholar 

  • Monnens LAH, Jonkman A, Thomas C (1984) Response to indomethacin and hydrochlorothiazide in nephrogenic diabetes insipidus. Clin Sci 66:709–715

    Article  CAS  PubMed  Google Scholar 

  • Morello JP, Salahpour A, Laperriere A, Bernier V, Arthus MF, Lonergan M, Petaja-Repo U, Angers S, Morin D, Bichet DG, Bouvier M (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 105:887–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu J, Johansson M, Hansson GC, Lundgren O (1999) Lithium evokes a more pronounced natriuresis when administered orally than when given intravenously to salt-depleted rats. Pflugers Arch 438:159–164

    Article  CAS  PubMed  Google Scholar 

  • Mulders SM, Knoers NVAM, van Lieburg AF, Monnens LAH, Leumann E, Wuhl E, Schober E, Rijss JPL, van Os CH, Deen PMT (1997) New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels. J Am Soc Nephrol 8:242–248

    CAS  PubMed  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  • Murillo-Carretero MI, Ilundain AA, Echevarria M (1999) Regulation of aquaporin mRNA expression in rat kidney by water intake. J Am Soc Nephrol 10:696–703

    CAS  PubMed  Google Scholar 

  • Musa-Aziz R, Chen LM, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci U S A 106:5406–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutig K, Paliege A, Kahl T, Jons T, Muller-Esterl W, Bachmann S (2007) Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am J Physiol Renal Physiol 293:F1166–F1177

    Article  CAS  PubMed  Google Scholar 

  • Nadler SP, Zimpelmann JA, Hebert RL (1992) PGE2 inhibits water permeability at a post-cAMP site in rat terminal inner medullary collecting duct. Am J Physiol 262:F229–F235

    CAS  PubMed  Google Scholar 

  • Nakanishi K, Sweeney WE Jr, Zerres K, Guay-Woodford LM, Avner ED (2000) Proximal tubular cysts in fetal human autosomal recessive polycystic kidney disease. J Am Soc Nephrol 11:760–763

    CAS  PubMed  Google Scholar 

  • Nasrat H, Wali FN, Warda A (1997) Diabetes insipidus, a rare complication of HELLP syndrome. Report of local experience and review of the literature. J Obstet Gynaecol 17:64–65

    Article  CAS  PubMed  Google Scholar 

  • Nejsum LN, Elkjaer M, Hager H, Frokiaer J, Kwon TH, Nielsen S (2000) Localization of aquaporin-7 in rat and mouse kidney using RT-PCR, immunoblotting, and immunocytochemistry. Biochem Biophys Res Commun 277:164–170

    Article  CAS  PubMed  Google Scholar 

  • Nejsum LN, Kwon TH, Marples D, Flyvbjerg A, Knepper MA, Frokiaer J, Nielsen S (2001) Compensatory increase in AQP2, p-AQP2, and AQP3 expression in rats with diabetes mellitus. Am J Physiol Renal Physiol 280:F715–F726

    CAS  PubMed  Google Scholar 

  • Nejsum LN, Zelenina M, Aperia A, Frokiaer J, Nielsen S (2005) Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Renal Physiol 288:F930–F938

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Digiovanni SR, Christensen EI, Knepper MA, Harris HW (1993a) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A 90:11663–11667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Knepper MA, Agre P (1993b) CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol 120:371–383

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA (1995a) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92:1013–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen S, Pallone T, Smith BL, Christensen EI, Agre P, Maunsbach AB (1995b) Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol 268:F1023–F1037

    CAS  PubMed  Google Scholar 

  • Nielsen S, Terris J, Andersen D, Ecelbarger C, Frokiaer J, Jonassen T, Marples D, Knepper MA, Petersen JS (1997) Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct. Proc Natl Acad Sci U S A 94:5450–5455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J, Kwon TH, Praetorius J, Kim YH, Frokiaer J, Knepper MA, Nielsen S (2003) Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI. Am J Physiol Renal Physiol 285:F1198–F1209

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Rojek A, Andreasen A (2014) Aquaporin 11 deletion results in induceable proximal tubule injury in response to metabolic challenge (LB837). FASEB J 28(1):Suppl LB837

    Google Scholar 

  • Nilsson L, Madsen K, Topcu SO, Jensen BL, Frokiaer J, Norregaard R (2012) Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse. Am J Physiol Renal Physiol 302:F1430–F1439

    Article  CAS  PubMed  Google Scholar 

  • Norregaard R, Jensen BL, Li C, Wang W, Knepper MA, Nielsen S, Frokiaer J (2005) COX-2 inhibition prevents downregulation of key renal water and sodium transport proteins in response to bilateral ureteral obstruction. Am J Physiol Renal Physiol 289:F322–F333

    Article  CAS  PubMed  Google Scholar 

  • Norregaard R, Jensen BL, Topcu SO, Wang G, Schweer H, Nielsen S, Frokiaer J (2010) Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue. Am J Physiol Regul Integr Comp Physiol 298:R1017–R1025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohshiro K, Yaoita E, Yoshida Y, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Yamamoto T (2001) Expression and immunolocalization of AQP6 in intercalated cells of the rat kidney collecting duct. Arch Histol Cytol 64:329–338

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, Sasaki S, Abe K (2008) Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J 22:3672–3684

    Article  CAS  PubMed  Google Scholar 

  • Olesen ET, Fenton RA (2013) Is there a role for PGE2 in urinary concentration? J Am Soc Nephrol 24:169–178

    Article  CAS  PubMed  Google Scholar 

  • Olesen ET, de Seigneux S, Wang G, Lutken SC, Frokiaer J, Kwon TH, Nielsen S (2009) Rapid and segmental specific dysregulation of AQP2, S256-pAQP2 and renal sodium transporters in rats with LPS-induced endotoxaemia. Nephrol Dial Transplant 24:2338–2349

    Article  CAS  PubMed  Google Scholar 

  • Olesen ET, Rutzler MR, Moeller HB, Praetorius HA, Fenton RA (2011) Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A 108:12949–12954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ooi BS, Chen BT, Tan KK, Khoo OT (1972) Human renal leptospirosis. Am J Trop Med Hyg 21:336–341

    Article  CAS  PubMed  Google Scholar 

  • Pallone TL, Edwards A, Ma T, Silldorff EP, Verkman AS (2000) Requirement of aquaporin-1 for NaCl-driven water transport across descending vasa recta. J Clin Invest 105:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer BF (2003) Hyponatremia in patients with central nervous system disease: SIADH versus CSW. Trends Endocrinol Metab 14:182–187

    Article  CAS  PubMed  Google Scholar 

  • Pedersen RS, Bentzen H, Bech JN, Nyvad O, Pedersen EB (2003) Urinary aquaporin-2 in healthy humans and patients with liver cirrhosis and chronic heart failure during baseline conditions and after acute water load. Kidney Int 63:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Peterson LN (1990) Vitamin D-induced chronic hypercalcemia inhibits thick ascending limb NaCl reabsorption in vivo. Am J Physiol 259:F122–F129

    CAS  PubMed  Google Scholar 

  • Poulsen SB, Kim YH, Frokiaer J, Nielsen S, Christensen BM (2013) Long-term vasopressin-V2-receptor stimulation induces regulation of aquaporin 4 protein in renal inner medulla and cortex of Brattleboro rats. Nephrol Dial Transplant 28:2058–2065

    Article  CAS  PubMed  Google Scholar 

  • Procino G, Carmosino M, Tamma G, Gouraud S, Laera A, Riccardi D, Svelto M, Valenti G (2004) Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int 66:2245–2255

    Article  CAS  PubMed  Google Scholar 

  • Procino G, Barbieri C, Carmosino M, Rizzo F, Valenti G, Svelto M (2010) Lovastatin-induced cholesterol depletion affects both apical sorting and endocytosis of aquaporin-2 in renal cells. Am J Physiol Renal Physiol 298:F266–F278

    Article  CAS  PubMed  Google Scholar 

  • Procino G, Barbieri C, Carmosino M, Tamma G, Milano S, De Benedictis L, Mola MG, Lazo-Fernandez Y, Valenti G, Svelto M (2011a) Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Arch 462:753–766

    Article  CAS  PubMed  Google Scholar 

  • Procino G, Mastrofrancesco L, Sallustio F, Costantino V, Barbieri C, Pisani F, Schena FP, Svelto M, Valenti G (2011b) AQP5 is expressed in type-B intercalated cells in the collecting duct system of the rat, mouse and human kidney. Cell Physiol Biochem 28:683–692

    Article  CAS  PubMed  Google Scholar 

  • Procino G, Mastrofrancesco L, Tamma G, Lasorsa DR, Ranieri M, Stringini G, Emma F, Svelto M, Valenti G (2012) Calcium-sensing receptor and aquaporin 2 interplay in hypercalciuria-associated renal concentrating defect in humans. An in vivo and in vitro study. PLoS One 7, e33145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procino G, Milano S, Tamma G, Dossena S, Barbieri C, Nicoletti MC, Ranieri M, Di MA, Nofziger C, Svelto M, Paulmichl M, Valenti G (2013) Co-regulated pendrin and aquaporin 5 expression and trafficking in Type-B intercalated cells under potassium depletion. Cell Physiol Biochem 32:184–199

    Article  CAS  PubMed  Google Scholar 

  • Promeneur D, Kwon TH, Yasui M, Kim GH, Frokiaer J, Knepper MA, Agre P, Nielsen S (2000) Regulation of AQP6 mRNA and protein expression in rats in response to altered acid-base or water balance. Am J Physiol Renal Physiol 279:F1014–F1026

    CAS  PubMed  Google Scholar 

  • Puliyanda DP, Ward DT, Baum MA, Hammond TG, Harris HW Jr (2003) Calpain-mediated AQP2 proteolysis in inner medullary collecting duct. Biochem Biophys Res Commun 303:52–58

    Article  CAS  PubMed  Google Scholar 

  • Raghavan R, Eknoyan G (2014) Acute interstitial nephritis – a reappraisal and update. Clin Nephrol 82:149–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranchin B, Boury-Jamot M, Blanchard G, Dubourg L, Hadj-Aissa A, Morin D, Durroux T, Cochat P, Bricca G, Verbavatz JM, Geelen G (2010) Familial nephrogenic syndrome of inappropriate antidiuresis: dissociation between aquaporin-2 and vasopressin excretion. J Clin Endocrinol Metab 95:E37–E43

    Article  PubMed  Google Scholar 

  • Rao R, Hao CM, Breyer MD (2004) Hypertonic stress activates glycogen synthase kinase 3beta-mediated apoptosis of renal medullary interstitial cells, suppressing an NFkappaB-driven cyclooxygenase-2-dependent survival pathway. J Biol Chem 279:3949–3955

    Article  CAS  PubMed  Google Scholar 

  • Rao R, Zhang MZ, Zhao M, Cai H, Harris RC, Breyer MD, Hao CM (2005) Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol 288:F642–F649

    Article  CAS  PubMed  Google Scholar 

  • Rao R, Patel S, Hao C, Woodgett J, Harris R (2010) GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol 21:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rascher W, Rosendahl W, Henrichs IA, Maier R, Seyberth HW (1987) Congenital nephrogenic diabetes insipidus-vasopressin and prostaglandins in response to treatment with hydrochlorothiazide and indomethacin. Pediatr Nephrol 1:485–490

    Article  CAS  PubMed  Google Scholar 

  • Robben JH, Knoers NV, Deen PM (2006a) Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 291:F257–F270

    Article  CAS  PubMed  Google Scholar 

  • Robben JH, Sze M, Knoers NV, Deen PM (2006b) Rescue of vasopressin v2 receptor mutants by chemical chaperones: specificity and mechanism. Mol Biol Cell 17:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robben JH, Sze M, Knoers NV, Deen PM (2007) Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 292:F253–F260

    Article  CAS  PubMed  Google Scholar 

  • Robben JH, Kortenoeven ML, Sze M, Yae C, Milligan G, Oorschot VM, Klumperman J, Knoers NV, Deen PM (2009) Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc Natl Acad Sci U S A 106:12195–12200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson AG (1976) DDAVP in the treatment of central diabetes insipidus. N Engl J Med 294:507–511

    Article  CAS  PubMed  Google Scholar 

  • Rojek A, Fuchtbauer EM, Kwon TH, Frokiaer J, Nielsen S (2006) Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci U S A 103:6037–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojek A, Praetorius J, Frokiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70:301–327

    Article  CAS  PubMed  Google Scholar 

  • Roudier N, Ripoche P, Gane P, Le Pennec PY, Daniels G, Cartron JP, Bailly P (2002) AQP3 deficiency in humans and the molecular basis of a novel blood group system, GIL. J Biol Chem 277:45854–45859

    Article  CAS  PubMed  Google Scholar 

  • Rubini ME (1961) Water excrtion in potassium-deficient man. J Clin Invest 40:2215–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell TA, Ito M, Ito M, Yu RN, Martinson FA, Weiss J, Jameson JL (2003) A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. J Clin Invest 112:1697–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito T, Ishikawa S, Abe K, Kamoi K, Yamada K, Shimizu K, Saruta T, Yoshida S (1997a) Acute aquaresis by the nonpeptide arginine vasopressin (AVP) antagonist OPC-31260 improves hyponatremia in patients with syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Clin Endocrinol Metab 82:1054–1057

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Ishikawa SE, Sasaki S, Nakamura T, Rokkaku K, Kawakami A, Honda K, Marumo F (1997b) Urinary excretion of aquaporin-2 in the diagnosis of central diabetes insipidus. J Clin Endocrinol Metab 82:1823–1827

    CAS  PubMed  Google Scholar 

  • Saito T, Ishikawa S, Ito T, Oda H, Ando F, Higashiyama M, Nagasaka S, Hieda M, Saito T (1999) Urinary excretion of aquaporin-2 water channel differentiates psychogenic polydipsia from central diabetes insipidus. J Clin Endocrinol Metab 84:2235–2237

    CAS  PubMed  Google Scholar 

  • Sakairi Y, Jacobson HR, Noland TD, Breyer MD (1995) Luminal prostaglandin E receptors regulate salt and water transport in rabbit cortical collecting duct. Am J Physiol 269:F257–F265

    CAS  PubMed  Google Scholar 

  • Sanches TR, Volpini RA, Massola Shimizu MH, Braganca AC, Oshiro-Monreal F, Seguro AC, Andrade L (2012) Sildenafil reduces polyuria in rats with lithium-induced NDI. Am J Physiol Renal Physiol 302:F216–F225

    Article  CAS  PubMed  Google Scholar 

  • Sands JM, Flores FX, Kato A, Baum MA, Brown EM, Ward DT, Hebert SC, Harris HW (1998) Vasopressin-elicited water and urea permeabilities are altered in IMCD in hypercalcemic rats. Am J Physiol 274:F978–F985

    CAS  PubMed  Google Scholar 

  • Satake M, Ikarashi N, Ichikawa Y, Maniwa A, Toda T, Ito K, Ochiai W, Sugiyama K (2010) The role of renal aquaporin 2 in the alleviation of dehydration associated with diabetic polyuria in KKAy mice. Life Sci 87:475–480

    Article  CAS  PubMed  Google Scholar 

  • Satoh M, Ogikubo S, Yoshizawa-Ogasawara A (2008) Correlation between clinical phenotypes and X-inactivation patterns in six female carriers with heterozygote vasopressin type 2 receptor gene mutations. Endocr J 55:277–284

    Article  CAS  PubMed  Google Scholar 

  • Savelkoul PJ, De Mattia F, Li Y, Kamsteeg EJ, Konings IB, van der Sluijs P, Deen PM (2009) p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum Mutat 30:E891–E903

    Article  PubMed  Google Scholar 

  • Schey KL, Wang Z, Wenke L, Qi Y (2014) Aquaporins in the eye: expression, function, and roles in ocular disease. Biochim Biophys Acta 1840:1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A 95:9660–9664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrier RW (2006) Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am J Med 119:S47–S53

    Article  CAS  PubMed  Google Scholar 

  • Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, Orlandi C (2006) Tolvaptan, a selective oral vasopressin v2-receptor antagonist, for hyponatremia. N Engl J Med 355:2099–2112

    Article  CAS  PubMed  Google Scholar 

  • Seguro AC, Andrade L (2013) Pathophysiology of leptospirosis. Shock 39(Suppl 1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Sherlock M, Thompson CJ (2010) The syndrome of inappropriate antidiuretic hormone: current and future management options. Eur J Endocrinol 162(Suppl 1):S13–S18

    Article  CAS  PubMed  Google Scholar 

  • Silberstein C, Bouley R, Huang Y, Fang P, Pastor-Soler N, Brown D, Van Hoek AN (2004) Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J Physiol Renal Physiol 287:F501–F511

    Article  CAS  PubMed  Google Scholar 

  • Singer I, Rotenberg D (1973) Demeclocycline-induced nephrogenic diabetes insipidus. In-vivo and in-vitro studies. Ann Intern Med 79:679–683

    Article  CAS  PubMed  Google Scholar 

  • Sinke AP, Kortenoeven ML, de Groot T, Baumgarten R, Devuyst O, Wetzels JF, Loffing J, Deen PM (2014) Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter. Am J Physiol Renal Physiol 306:F525–F533

    Article  CAS  PubMed  Google Scholar 

  • Sohara E, Rai T, Miyazaki J, Verkman AS, Sasaki S, Uchida S (2005) Defective water and glycerol transport in the proximal tubules of AQP7 knockout mice. Am J Physiol Renal Physiol 289:F1195–F1200

    Article  CAS  PubMed  Google Scholar 

  • Soria LR, Fanelli E, Altamura N, Svelto M, Marinelli RA, Calamita G (2010) Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun 393:217–221

    Article  CAS  PubMed  Google Scholar 

  • Soupart A, Gross P, Legros JJ, Alfoldi S, Annane D, Heshmati HM, Decaux G (2006) Successful long-term treatment of hyponatremia in syndrome of inappropriate antidiuretic hormone secretion with satavaptan (SR121463B), an orally active nonpeptide vasopressin V2-receptor antagonist. Clin J Am Soc Nephrol 1:1154–1160

    Article  CAS  PubMed  Google Scholar 

  • Stanton BA, Koeppen BM (1998) Solute and water transport along the nephron: tubular function. In: Berne RM, Levy MN (eds) Physiology, 4th edn. Mosby, St. Louis, MO, pp 699–714

    Google Scholar 

  • Stodkilde L, Norregaard R, Fenton RA, Wang G, Knepper MA, Frokiaer J (2011) Bilateral ureteral obstruction induces early downregulation and redistribution of AQP2 and phosphorylated AQP2. Am J Physiol Renal Physiol 301:F226–F235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strange K, Spring KR (1987) Cell membrane water permeability of rabbit cortical collecting duct. J Membr Biol 96:27–43

    Article  CAS  PubMed  Google Scholar 

  • Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  CAS  PubMed  Google Scholar 

  • Tamma G, Robben JH, Trimpert C, Boone M, Deen PM (2011) Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination. Am J Physiol Cell Physiol 300:C636–C646

    Article  CAS  PubMed  Google Scholar 

  • Tamma G, Di MA, Ranieri M, Svelto M, Pisot R, Bilancio G, Cavallo P, De Santo NG, Cirillo M, Valenti G (2014) A decrease in aquaporin 2 excretion is associated with bed rest induced high calciuria. J Transl Med 12:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tchekneva EE, Khuchua Z, Davis LS, Kadkina V, Dunn SR, Bachman S, Ishibashi K, Rinchik EM, Harris RC, Dikov MM, Breyer MD (2008) Single amino acid substitution in aquaporin 11 causes renal failure. J Am Soc Nephrol 19:1955–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenenbaum J, Ayoub MA, Perkovska S, Adra-Delenne AL, Mendre C, Ranchin B, Bricca G, Geelen G, Mouillac B, Durroux T, Morin D (2009) The constitutively active V2 receptor mutants conferring NSIAD are weakly sensitive to agonist and antagonist regulation. PLoS One 4, e8383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S (1995) Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 38:F775–F785

    Google Scholar 

  • Terris J, Ecelbarger CA, Nielsen S, Knepper MA (1996) Long-term regulation of four renal aquaporins in rats. Am J Physiol 40:F414–F422

    Google Scholar 

  • Tfelt-Hansen J, Schwarz P, Brown EM, Chattopadhyay N (2003) The calcium-sensing receptor in human disease. Front Biosci 8:s377–s390

    Article  CAS  PubMed  Google Scholar 

  • Timmer RT, Sands JM (1999) Lithium intoxication. J Am Soc Nephrol 10:666–674

    CAS  PubMed  Google Scholar 

  • Trepiccione F, Pisitkun T, Hoffert JD, Poulsen SB, Capasso G, Nielsen S, Knepper MA, Fenton RA, Christensen BM (2014) Early targets of lithium in rat kidney inner medullary collecting duct include p38 and ERK1/2. Kidney Int. doi:10.1038/ki.2014.107

    PubMed  Google Scholar 

  • Tsuboi Y, Ishikawa S, Fujisawa G, Okada K, Saito T (1994) Therapeutic efficacy of the non-peptide AVP antagonist OPC-31260 in cirrhotic rats. Kidney Int 46:237–244

    Article  CAS  PubMed  Google Scholar 

  • Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, Van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273:24737–24743

    Article  CAS  PubMed  Google Scholar 

  • Valenti G, Laera A, Pace G, Aceto G, Lospalluti ML, Penza R, Selvaggi FP, Chiozza ML, Svelto M (2000) Urinary aquaporin 2 and calciuria correlate with the severity of enuresis in children. J Am Soc Nephrol 11:1873–1881

    CAS  PubMed  Google Scholar 

  • Valenti G, Laera A, Gouraud S, Pace G, Aceto G, Penza R, Selvaggi FP, Svelto M (2002) Low-calcium diet in hypercalciuric enuretic children restores AQP2 excretion and improves clinical symptoms. Am J Physiol Renal Physiol 283:F895–F903

    Article  PubMed  Google Scholar 

  • Valtin H, Schroeder HA, Benirschke K, Sokol HW (1962) Familial hypothalamic diabetes insipidus in rats. Nature 196:1109–1110

    Article  CAS  PubMed  Google Scholar 

  • Van Balkom BWM, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, Deen PMT (2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem 277:41473–41479

    Article  PubMed  CAS  Google Scholar 

  • Van Hoek AN, Ma T, Yang B, Verkman AS, Brown D (2000) Aquaporin-4 is expressed in basolateral membranes of proximal tubule S3 segments in mouse kidney. Am J Physiol Renal Physiol 278:F310–F316

    PubMed  Google Scholar 

  • Van Hoek AN, Bouley R, Lu Y, Silberstein C, Brown D, Wax MB, Patil RV (2009) Vasopressin-induced differential stimulation of AQP4 splice variants regulates the in-membrane assembly of orthogonal arrays. Am J Physiol Renal Physiol 296:F1396–F1404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verkman AS (2008) Dissecting the roles of aquaporins in renal pathophysiology using transgenic mice. Semin Nephrol 28:217–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voisin DL, Bourque CW (2002) Integration of sodium and osmosensory signals in vasopressin neurons. Trends Neurosci 25:199–205

    Article  CAS  PubMed  Google Scholar 

  • Walker RJ, Weggery S, Bedford JJ, McDonald FJ, Ellis G, Leader JP (2005) Lithium-induced reduction in urinary concentrating ability and urinary aquaporin 2 (AQP2) excretion in healthy volunteers. Kidney Int 67:291–294

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tajkhorshid E (2010) Nitric oxide conduction by the brain aquaporin AQP4. Proteins 78:661–670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Kwon TH, Li C, Frokiaer J, Knepper MA, Nielsen S (2002a) Reduced expression of Na-K-2Cl cotransporter in medullary TAL in vitamin D-induced hypercalcemia in rats. Am J Physiol Renal Physiol 282:F34–F44

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Li C, Kwon TH, Knepper MA, Frokiaer J, Nielsen S (2002b) AQP3, p-AQP2, and AQP2 expression is reduced in polyuric rats with hypercalcemia: prevention by cAMP-PDE inhibitors. Am J Physiol Renal Physiol 283:F1313–F1325

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Li C, Kwon TH, Miller RT, Knepper MA, Frokiaer J, Nielsen S (2004) Reduced expression of renal Na+ transporters in rats with PTH-induced hypercalcemia. Am J Physiol Renal Physiol 286:F534–F545

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Li C, Nejsum LN, Li H, Kim SW, Kwon TH, Jonassen TE, Knepper MA, Thomsen K, Frokiaer J, Nielsen S (2006) Biphasic effects of ANP infusion in conscious, euvolumic rats: roles of AQP2 and ENaC trafficking. Am J Physiol Renal Physiol 290:F530–F541

    Article  CAS  PubMed  Google Scholar 

  • Weinstock RS, Moses AM (1990) Desmopressin and indomethacin therapy for nephrogenic diabetes insipidus in patients receiving lithium carbonate. South Med J 83:1475–1477

    Article  CAS  PubMed  Google Scholar 

  • Wen H, Froklaer J, Kwon TH, Nielsen S (1999) Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway. J Am Soc Nephrol 10:1416–1429

    CAS  PubMed  Google Scholar 

  • Wildman SS, Boone M, Peppiatt-Wildman CM, Contreras-Sanz A, King BF, Shirley DG, Deen PM, Unwin RJ (2009) Nucleotides downregulate aquaporin 2 via activation of apical P2 receptors. J Am Soc Nephrol 20:1480–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willcutts MD, Felner E, White PC (1999) Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. Hum Mol Genet 8:1303–1307

    Article  CAS  PubMed  Google Scholar 

  • Wilson DM, Perry HO, Sams WM Jr, Dousa TP (1973) Selective inhibition of human distal tubular function by demeclocycline. Curr Ther Res Clin Exp 15:737–740

    CAS  PubMed  Google Scholar 

  • Wong F, Blei AT, Blendis LM, Thuluvath PJ (2003) A vasopressin receptor antagonist (VPA-985) improves serum sodium concentration in patients with hyponatremia: a multicenter, randomized, placebo-controlled trial. Hepatology 37:182–191

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen L, Zhang X, Zhou Q, Li JM, Berger S, Borok Z, Zhou B, Xiao Z, Yin H, Liu M, Wang Y, Jin J, Blackburn MR, Xia Y, Zhang W (2013) Aqp5 is a new transcriptional target of Dot1a and a regulator of Aqp2. PLoS One 8, e53342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu DL, Martin PY, Ohara M, Stjohn J, Pattison T, Meng XZ, Morris K, Kim JK, Schrier RW (1997) Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J Clin Invest 99:1500–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, Fujiyoshi Y (2007) Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta 1768:688–693

    Article  CAS  PubMed  Google Scholar 

  • Yakata K, Tani K, Fujiyoshi Y (2011) Water permeability and characterization of aquaporin-11. J Struct Biol 174:315–320

    Article  CAS  PubMed  Google Scholar 

  • Yang BX, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577–4580

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem 276:2775–2779

    Article  PubMed  Google Scholar 

  • Yang B, Song Y, Zhao D, Verkman AS (2005) Phenotype analysis of aquaporin-8 null mice. Am J Physiol Cell Physiol 288:C1161–C1170

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Zhao D, Qian L, Verkman AS (2006a) Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. Am J Physiol Renal Physiol 291:F465–F472

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Zhao D, Solenov E, Verkman AS (2006b) Evidence from knockout mice against physiologically significant aquaporin 8-facilitated ammonia transport. Am J Physiol Cell Physiol 291:C417–C423

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Zhao D, Verkman AS (2006c) Evidence against functionally significant aquaporin expression in mitochondria. J Biol Chem 281:16202–16206

    Article  CAS  PubMed  Google Scholar 

  • Yasui M, Zelenin SM, Celsi G, Aperia A (1997) Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am J Physiol 41:F443–F450

    Google Scholar 

  • Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999a) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  CAS  PubMed  Google Scholar 

  • Yasui M, Kwon TH, Knepper MA, Nielsen S, Agre P (1999b) Aquaporin-6: an intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci U S A 96:5808–5813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye L, Li X, Chen Y, Sun H, Wang W, Su T, Jiang L, Cui B, Ning G (2005) Autosomal dominant neurohypophyseal diabetes insipidus with linkage to chromosome 20p13 but without mutations in the AVP-NPII gene. J Clin Endocrinol Metab 90:4388–4393

    Article  CAS  PubMed  Google Scholar 

  • Yip KP (2006) Epac-mediated Ca2+ mobilization and exocytosis in inner medullary collecting duct. Am J Physiol Renal Physiol 291:F882–F890

    Article  CAS  PubMed  Google Scholar 

  • Zelenina M, Christensen BM, Palmer J, Nairn AC, Nielsen S, Aperia A (2000) Prostaglandin E(2) interaction with AVP: effects on AQP2 phosphorylation and distribution. Am J Physiol Renal Physiol 278:F388–F394

    CAS  PubMed  Google Scholar 

  • Zhai XY, Fenton RA, Andreasen A, Thomsen JS, Christensen EI (2007) Aquaporin-1 is not expressed in descending thin limbs of short-loop nephrons. J Am Soc Nephrol 18:2937–2944

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory is supported by the Danish Medical Research Council, the Lundbeck Foundation, the Novo Nordisk Foundation, and the Carlsberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Fenton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Kortenoeven, M.L.A., Olesen, E.T.B., Fenton, R.A. (2016). Renal Aquaporins in Health and Disease. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_25

Download citation

Publish with us

Policies and ethics