Skip to main content

Classical and Targeted Anticancer Drugs: An Appraisal of Mechanisms of Multidrug Resistance

  • Protocol
  • First Online:
Cancer Drug Resistance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1395))

Abstract

The mechanisms by which tumor cells resist the action of multiple anticancer drugs, often with widely different chemical structures, have been pursued for more than 30 years. The identification of P-glycoprotein (P-gp), a drug efflux transporter protein with affinity for multiple therapeutic drugs, provided an important potential mechanism and further work, which identified other members of ATP-binding cassette (ABC) family that act as drug transporters. Several observations, including results of clinical trials with pharmacological inhibitors of P-gp, have suggested that mechanisms other than efflux transporters should be considered as contributors to resistance, and in this review mechanisms of anticancer drug resistance are considered more broadly. Cells in human tumors exist is a state of continuous turnover, allowing ongoing selection and “survival of the fittest.” Tumor cells die not only as a consequence of drug therapy but also by apoptosis induced by their microenvironment. Cell death can be mediated by host immune mechanisms and by nonimmune cells acting on so-called death receptors. The tumor cell proliferation rate is also important because it controls tumor regeneration. Resistance to therapy might therefore be considered to arise from a reduction of several distinct cell death mechanisms, as well as from an increased ability to regenerate. This review provides a perspective on these mechanisms, together with brief descriptions of some of the methods that can be used to investigate them in a clinical situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wick W, Weller M, van den Bent M, Sanson M, Weiler M, von Deimling A, Plass C, Hegi M, Platten M, Reifenberger G (2014) MGMT testing--the challenges for biomarker-based glioma treatment. Nat Rev Neurol 10:372–385

    Article  CAS  PubMed  Google Scholar 

  2. Spagnolo F, Ghiorzo P, Queirolo P (2014) Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. Oncotarget 5:10206–10221

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hughes D (2014) Selection and evolution of resistance to antimicrobial drugs. IUBMB Life 66:521–529

    Article  CAS  PubMed  Google Scholar 

  4. Durand RE (1993) Cell kinetics and repopulation during multifraction irradiation of spheroids: implications for clinical radiotherapy. Semin Radiat Oncol 3:105–114

    Article  PubMed  Google Scholar 

  5. Baguley BC (2010) Multidrug resistance in cancer. Methods Mol Biol 596:1–14

    Article  CAS  PubMed  Google Scholar 

  6. Baguley BC, Falkenhaug EM (1971) Plasma half-life of cytosine arabinoside (NSC-63878) in patients treated for acute myeloblastic leukemia. Cancer Chemother Rep 1(55):291–298

    Google Scholar 

  7. Momparler RL (2013) Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia. Exp Hematol Oncol 2:20

    Article  PubMed  PubMed Central  Google Scholar 

  8. Newell DR, Eeles RA, Gumbrell LA, Boxall FE, Horwich A, Calvert AH (1989) Carboplatin and etoposide pharmacokinetics in patients with testicular teratoma. Cancer Chemother Pharmacol 23:367–372

    Article  CAS  PubMed  Google Scholar 

  9. Hicks KO, Pruijn FB, Secomb TW, Hay MP, Hsu R, Brown JM, Denny WA, Dewhirst MW, Wilson WR (2006) Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs. J Natl Cancer Inst 98:1118–1128

    Article  CAS  PubMed  Google Scholar 

  10. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  CAS  PubMed  Google Scholar 

  11. Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40(Suppl):S3–S8

    Article  CAS  PubMed  Google Scholar 

  12. Gottesman MM, Ling V (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 580:998–1009

    Article  CAS  PubMed  Google Scholar 

  13. Endicott JA, Ling V (1989) The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58:137–171

    Article  CAS  PubMed  Google Scholar 

  14. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamagishi T, Sahni S, Sharp DM, Arvind A, Jansson PJ, Richardson DR (2013) P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J Biol Chem 288:31761–31771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Molinari A, Calcabrini A, Meschini S, Stringaro A, Crateri P, Toccacieli L, Marra M, Colone M, Cianfriglia M, Arancia G (2002) Subcellular detection and localization of the drug transporter P-glycoprotein in cultured tumor cells. Curr Protein Pept Sci 3:653–670

    Article  CAS  PubMed  Google Scholar 

  17. Roskoski R Jr (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79:34–74

    Article  CAS  PubMed  Google Scholar 

  18. Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF (2010) Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther 334:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lainey E, Sebert M, Thepot S, Scoazec M, Bouteloup C, Leroy C, De Botton S, Galluzzi L, Fenaux P, Kroemer G (2012) Erlotinib antagonizes ABC transporters in acute myeloid leukemia. Cell Cycle 11:4079–4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Vries NA, Buckle T, Zhao J, Beijnen JH, Schellens JH, van Tellingen O (2012) Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs 30:443–449

    Article  CAS  PubMed  Google Scholar 

  21. Cole SP, Chanda ER, Dicke FP, Gerlach JH, Mirski SE (1991) Non-P-glycoprotein-mediated multidrug resistance in a small cell lung cancer cell line: evidence for decreased susceptibility to drug-induced DNA damage and reduced levels of topoisomerase II. Cancer Res 51:3345–3352

    CAS  PubMed  Google Scholar 

  22. Cole SP (2014) Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 54:95–117

    Article  CAS  PubMed  Google Scholar 

  23. Tukey RH, Strassburg CP (2000) Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 40:581–616

    Article  CAS  PubMed  Google Scholar 

  24. ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143:419–435

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shibayama Y, Nakano K, Maeda H, Taguchi M, Ikeda R, Sugawara M, Iseki K, Takeda Y, Yamada K (2011) Multidrug resistance protein 2 implicates anticancer drug-resistance to sorafenib. Biol Pharm Bull 34:433–435

    Article  CAS  PubMed  Google Scholar 

  26. Elmeliegy MA, Carcaboso AM, Tagen M, Bai F, Stewart CF (2011) Role of ATP-binding cassette and solute carrier transporters in erlotinib CNS penetration and intracellular accumulation. Clin Cancer Res 17:89–99

    Article  CAS  PubMed  Google Scholar 

  27. Deady LW, Rodemann T, Zhuang L, Baguley BC, Denny WA (2003) Synthesis and cytotoxic activity of carboxamide derivatives of benzo[b][1,6]naphthyridines. J Med Chem 46:1049–1054

    Article  CAS  PubMed  Google Scholar 

  28. Lukka PB, Chen YY, Finlay GJ, Joseph WR, Richardson E, Paxton JW, Baguley BC (2013) Tumour tissue selectivity in the uptake and retention of SN 28049, a new topoisomerase II-directed anticancer agent. Cancer Chemother Pharmacol 72:1013–1022

    Article  CAS  PubMed  Google Scholar 

  29. Chen YY, Lukka PB, Joseph WR, Finlay GJ, Paxton JW, McKeage MJ, Baguley BC (2014) Selective cellular uptake and retention of SN 28049, a new DNA-binding topoisomerase II-directed antitumor agent. Cancer Chemother Pharmacol 74:25–35

    Article  CAS  PubMed  Google Scholar 

  30. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41:1967–1972

    CAS  PubMed  Google Scholar 

  31. Beck WT (1991) Modulators of P-glycoprotein-associated multidrug resistance. Cancer Treat Res 57:151–170

    Article  CAS  PubMed  Google Scholar 

  32. Boesch D, Gaveriaux C, Jachez B, Pourtier-Manzanedo A, Bollinger P, Loor F (1991) In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 51:4226–4233

    CAS  PubMed  Google Scholar 

  33. Avendano C, Menendez JC (2002) Inhibitors of multidrug resistance to antitumor agents (MDR). Curr Med Chem 9:159–193

    Article  CAS  PubMed  Google Scholar 

  34. Pusztai L, Wagner P, Ibrahim N, Rivera E, Theriault R, Booser D, Symmans FW, Wong F, Blumenschein G, Fleming DR, Rouzier R, Boniface G, Hortobagyi GN (2005) Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer 104:682–691

    Article  CAS  PubMed  Google Scholar 

  35. Ruff P, Vorobiof DA, Jordaan JP, Demetriou GS, Moodley SD, Nosworthy AL, Werner ID, Raats J, Burgess LJ (2009) A randomized, placebo-controlled, double-blind phase 2 study of docetaxel compared to docetaxel plus zosuquidar (LY335979) in women with metastatic or locally recurrent breast cancer who have received one prior chemotherapy regimen. Cancer Chemother Pharmacol 64:763–768

    Article  CAS  PubMed  Google Scholar 

  36. Danks MK, Yalowich JC, Beck WT (1987) Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26). Cancer Res 47:1297–1301

    CAS  PubMed  Google Scholar 

  37. Pegg AE (2000) Repair of O(6)-alkylguanine by alkyltransferases. Mutat Res 462:83–100

    Article  CAS  PubMed  Google Scholar 

  38. Preuss I, Thust R, Kaina B (1996) Protective effect of O6-methylguanine-DNA methyltransferase (MGMT) on the cytotoxic and recombinogenic activity of different antineoplastic drugs. Int J Cancer 65:506–512

    Article  CAS  PubMed  Google Scholar 

  39. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  CAS  PubMed  Google Scholar 

  40. Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE, Dias-Santagata D, Stubbs H, Lee DY, Singh A, Drew L, Haber DA, Settleman J (2008) Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 68:4853–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang J, Liu J (2013) Tumor stroma as targets for cancer therapy. Pharmacol Ther 137:200–215

    Article  CAS  PubMed  Google Scholar 

  42. Friberg S, Mattson S (1997) On the growth rates of human malignant tumors: implications for medical decision making. J Surg Oncol 65:284–297

    Article  CAS  PubMed  Google Scholar 

  43. Gasparini G, Longo R, Toi M, Ferrara N (2005) Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol 2:562–577

    Article  CAS  PubMed  Google Scholar 

  44. Wilson GD, McNally NJ, Dische S, Saunders MI, Des Rochers C, Lewis AA, Bennett MH (1988) Measurement of cell kinetics in human tumours in vivo using bromodeoxyuridine incorporation and flow cytometry. Br J Cancer 58:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baguley BC (2011) The paradox of cancer cell apoptosis. Front Biosci (Landmark Ed) 16:1759–1767

    Article  CAS  Google Scholar 

  46. Diaz D, Prieto A, Reyes E, Barcenilla H, Monserrat J, Alvarez-Mon M (2008) Flow cytometry enumeration of apoptotic cancer cells by apoptotic rate. Methods Mol Biol 414:23–33

    CAS  PubMed  Google Scholar 

  47. Micheau O, Shirley S, Dufour F (2013) Death receptors as targets in cancer. Br J Pharmacol 169:1723–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fan Z, Zhang Q (2005) Molecular mechanisms of lymphocyte-mediated cytotoxicity. Cell Mol Immunol 2:259–264

    CAS  PubMed  Google Scholar 

  49. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344:921–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498

    Article  CAS  PubMed  Google Scholar 

  51. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  CAS  PubMed  Google Scholar 

  52. Meyer JS, He W (1993) Cell proliferation measurements by bromodeoxyuridine or thymidine incorporation: clinical correlates. Semin Radiat Oncol 3:126–134

    Article  PubMed  Google Scholar 

  53. Laing JH, Wilson GD, Martindale CA (2003) Proliferation rates in human malignant melanoma: relationship to clinicopathological features and outcome. Melanoma Res 13:271–277

    Article  PubMed  Google Scholar 

  54. Begg AC, Haustermans K, Hart AA, Dische S, Saunders M, Zackrisson B, Gustaffson H, Coucke P, Paschoud N, Hoyer M, Overgaard J, Antognoni P, Richetti A, Bourhis J, Bartelink H, Horiot JC, Corvo R, Giaretti W, Awwad H, Shouman T, Jouffroy T, Maciorowski Z, Dobrowsky W, Struikmans H, Wilson GD et al (1999) The value of pretreatment cell kinetic parameters as predictors for radiotherapy outcome in head and neck cancer: a multicenter analysis. Radiother oncol 50:13–23

    Article  CAS  PubMed  Google Scholar 

  55. Furneaux CE, Marshall ES, Yeoh K, Monteith SJ, Mews PJ, Sansur CA, Oskouian RJ, Sharples KJ, Baguley BC (2008) Cell cycle times of short-term cultures of brain cancers as predictors of survival. Br J Cancer 99:1678–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  57. Baguley BC, Finlay GJ, Wilson WR (1986) Cytokinetic resistance of Lewis lung carcinoma to cyclophosphamide and the amsacrine derivative CI-921. Prog Clin Biol Res 223:47–61

    CAS  PubMed  Google Scholar 

  58. Finlay GJ, Wilson WR, Baguley BC (1987) Cytokinetic factors in drug resistance of Lewis lung carcinoma: comparison of cells freshly isolated from tumours with cells from exponential and plateau-phase cultures. Br J Cancer 56:755–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Itamochi H, Kigawa J, Sugiyama T, Kikuchi Y, Suzuki M, Terakawa N (2002) Low proliferation activity may be associated with chemoresistance in clear cell carcinoma of the ovary. Obstet Gynecol 100:281–287

    PubMed  Google Scholar 

  60. Bonetti A, Zaninelli M, Rodella S, Molino A, Sperotto L, Piubello Q, Bonetti F, Nortilli R, Turazza M, Cetto GL (1996) Tumor proliferative activity and response to first-line chemotherapy in advanced breast carcinoma. Breast Cancer Res Treat 38:289–297

    Article  CAS  PubMed  Google Scholar 

  61. Anjomshoaa A, Lin YH, Black MA, McCall JL, Humar B, Song S, Fukuzawa R, Yoon HS, Holzmann B, Friederichs J, van Rij A, Thompson-Fawcett M, Reeve AE (2008) Reduced expression of a gene proliferation signature is associated with enhanced malignancy in colon cancer. Br J Cancer 99:966–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Suzuki E, Sun J, Kapoor V, Jassar AS, Albelda SM (2007) Gemcitabine has significant immunomodulatory activity in murine tumor models independent of its cytotoxic effects. Cancer Biol Ther 6:880–885

    Article  CAS  PubMed  Google Scholar 

  63. de Biasi AR, Villena-Vargas J, Adusumilli PS (2014) Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin Cancer Res 20:5384–5391

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21:15–25

    Article  CAS  PubMed  Google Scholar 

  65. Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G (2008) The anticancer immune response: indispensable for therapeutic success? J Clin Invest 118:1991–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gerdes MJ, Sood A, Sevinsky C, Pris AD, Zavodszky MI, Ginty F (2014) Emerging understanding of multiscale tumor heterogeneity. Front Oncol 4:366

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leung E, Kannan N, Krissansen GW, Findlay MP, Baguley BC (2010) MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biol Ther 9:717–724

    Article  CAS  PubMed  Google Scholar 

  70. Hampton OA, Den Hollander P, Miller CA, Delgado DA, Li J, Coarfa C, Harris RA, Richards S, Scherer SE, Muzny DM, Gibbs RA, Lee AV, Milosavljevic A (2009) A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Res 19:167–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kemper K, de Goeje PL, Peeper DS, van Amerongen R (2014) Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Res 74:5937–5941

    Article  CAS  PubMed  Google Scholar 

  72. Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C, Domingo-Domenech J (2014) Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 33:4451–4463

    Article  CAS  PubMed  Google Scholar 

  73. Hong IS, Lee HY, Nam JS (2015) Cancer stem cells: the ‘Achilles heel’ of chemo-resistant tumors. Recent Pat Anticancer Drug Discov 10:2–22

    Article  CAS  PubMed  Google Scholar 

  74. Marshall ES, Baguley BC, Matthews JH, Jose CC, Furneaux CE, Shaw JH, Kirker JA, Morton RP, White JB, Rice ML, Isaacs RJ, Coutts R, Whittaker JR (2004) Estimation of radiation-induced interphase cell death in cultures of human tumor material and in cell lines. Oncol Res 14:297–304

    CAS  PubMed  Google Scholar 

  75. Marshall ES, Finlay GJ, Matthews JH, Shaw JH, Nixon J, Baguley BC (1992) Microculture-based chemosensitivity testing: a feasibility study comparing freshly explanted human melanoma cells with human melanoma cell lines. J Natl Cancer Inst 84:340–345

    Article  CAS  PubMed  Google Scholar 

  76. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, Greninger P, Lee D, Kalsy A, Gomez-Caraballo M, Elamine L, Howe E, Hur W, Lifshits E, Robinson HE, Katayama R, Faber AC, Awad MM, Ramaswamy S, Mino-Kenudson M, Iafrate AJ, Benes CH, Engelman JA (2014) Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346:1480–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, Timofeeva OA, Nealon C, Dakic A, Simic V, Haddad BR, Rhim JS, Dritschilo A, Riegel A, McBride A, Schlegel R (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol 180:599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Houghton JA, Taylor DM (1978) Maintenance of biological and biochemical characteristics of human colorectal tumours during serial passage in immune-deprived mice. Br J Cancer 37:199–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Monsma DJ, Monks NR, Cherba DM, Dylewski D, Eugster E, Jahn H, Srikanth S, Scott SB, Richardson PJ, Everts RE, Ishkin A, Nikolsky Y, Resau JH, Sigler R, Nickoloff BJ, Webb CP (2012) Genomic characterization of explant tumorgraft models derived from fresh patient tumor tissue. J Transl Med 10:125

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wargo JA, Cooper ZA, Flaherty KT (2014) Universes collide: combining immunotherapy with targeted therapy for cancer. Cancer discov 4:1377–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Selimoglu-Buet D, Gallais I, Denis N, Guillouf C, Moreau-Gachelin F (2012) Oncogenic kit triggers Shp2/Erk1/2 pathway to down-regulate the pro-apoptotic protein Bim and to promote apoptosis resistance in leukemic cells. PLoS One 7, e49052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. Baguley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baguley, B.C. (2016). Classical and Targeted Anticancer Drugs: An Appraisal of Mechanisms of Multidrug Resistance. In: Rueff, J., Rodrigues, A. (eds) Cancer Drug Resistance. Methods in Molecular Biology, vol 1395. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3347-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3347-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3345-7

  • Online ISBN: 978-1-4939-3347-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics