Skip to main content

Multidrug Resistance in Cancer

  • Protocol
  • First Online:
Multi-Drug Resistance in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

It is becoming increasingly clear that the proliferation of human tumours is driven by a small proportion of cells, termed tumour stem cells, which have the properties of self-renewal. On analogy with stem cells for normal tissues, there are likely to be multiple mechanisms, involving both intrinsic cellular properties and microenvironmental factors, which enable tumour stem cells to resist potentially genotoxic agents. Intrinsic properties include maintenance of cells in a predominantly non-cycling state, expression of transport proteins such as P-glycoprotein, protection from induced apoptosis or other forms of cell death, and limitation of diffusion of potential cytotoxins from the bloodstream. In addition, tumour stem cells are likely to contain multiple genetic changes that will potentially activate host immune mechanisms, which are designed to respond to such changes, and the methods by which tumours suppress such mechanisms are of great relevance to drug resistance. A number of methods of overcoming intrinsic multidrug resistance of tumours have been developed but methods for overcoming tumour resistance mediated by host cells are still at an early stage and require further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolhuis H, Van Veen HW, Poolman B, Driessen AJ, Konings WN (1997) Mechanisms of multidrug transporters. FEMS Microbiol Rev 21:55–84

    Article  CAS  PubMed  Google Scholar 

  2. Baguley BC, Marshall ES (2008) The use of human tumour cell lines in the discovery of new cancer chemotherapeutic drugs. Expert Opin Drug Discov 3:153–161

    Article  CAS  Google Scholar 

  3. Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14:2519–2526

    Article  CAS  PubMed  Google Scholar 

  4. Parmar K, Mauch P, Vergilio J, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104:5431–5436

    Article  CAS  PubMed  Google Scholar 

  5. Huls M, Russel FG, Masereeuw R (2009) The role of ABC transporters in tissue defense and organ regeneration. J Pharmacol Exp Ther 328:3–9

    Article  CAS  PubMed  Google Scholar 

  6. Turco MC, Romano MF, Petrella A et al (2004) NF-kappaB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 18:11–17

    Article  CAS  PubMed  Google Scholar 

  7. Massague J (2008) TGFbeta in Cancer. Cell 134:215–230

    Article  CAS  PubMed  Google Scholar 

  8. MacKie RM, Reid R, Junor B (2003) Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med 348:567–568

    Article  PubMed  Google Scholar 

  9. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  CAS  PubMed  Google Scholar 

  10. Demicheli R, Retsky MW, Hrushesky WJ, Baum M (2007) Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4:699–710

    Article  PubMed  Google Scholar 

  11. Koebel CM, Vermi W, Swann JB et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907

    Article  CAS  PubMed  Google Scholar 

  12. Kortylewski M, Komyod W, Kauffmann ME et al (2004) Interferon-gamma-mediated growth regulation of melanoma cells: involvement of STAT1-dependent and STAT1-independent signals. J Invest Dermatol 122:414–422

    Article  CAS  PubMed  Google Scholar 

  13. Muller-Hermelink N, Braumuller H, Pichler B et al (2008) TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13:507–518

    Article  PubMed  Google Scholar 

  14. Finlay GJ, Baguley BC (2000) Effects of protein binding on the in vitro activity of antitumour acridine derivatives and related anticancer drugs. Cancer Chemother Pharmacol 45:417–422

    Article  CAS  PubMed  Google Scholar 

  15. Hicks KO, Pruijn FB, Baguley BC, Wilson WR (2001) Extravascular transport of the DNA intercalator and topoisomerase poison N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA): diffusion and metabolism in multicellular layers of tumor cells. J Pharmacol Exp Ther 297:1088–1098

    CAS  PubMed  Google Scholar 

  16. Nakagawa T, Inoue Y, Kodama H et al (2008) Expression of copper-transporting P-type adenosine triphosphatase (ATP7B) correlates with cisplatin resistance in human non-small cell lung cancer xenografts. Oncol Rep 20:265–270

    CAS  PubMed  Google Scholar 

  17. Chen KG, Valencia JC, Lai B et al (2006) Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci USA 103:9903–9907

    Article  CAS  PubMed  Google Scholar 

  18. Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40(Suppl):S3–S8

    Article  CAS  PubMed  Google Scholar 

  19. Gillet JP, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 1775:237–262

    CAS  PubMed  Google Scholar 

  20. Ejendal KF, Hrycyna CA (2002) Multidrug resistance and cancer: the role of the human ABC transporter ABCG2. Curr Protein Pept Sci 3:503–511

    Article  CAS  PubMed  Google Scholar 

  21. Sarkadi B, Ozvegy-Laczka C, Nemet K, Varadi A (2004) ABCG2 – a transporter for all seasons. FEBS Lett 567:116–120

    Article  CAS  PubMed  Google Scholar 

  22. Loebinger MR, Giangreco A, Groot KR et al (2008) Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter blockade. Br J Cancer 98:380–387

    Article  CAS  PubMed  Google Scholar 

  23. Sharma SV, Gajowniczek P, Way IP et al (2006) A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 10:425–435

    Article  CAS  PubMed  Google Scholar 

  24. Olson JM, Hallahan AR (2004) p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med 10:125–129

    Article  CAS  PubMed  Google Scholar 

  25. Hersey P, Zhuang L, Zhang XD (2006) Current strategies in overcoming resistance of cancer cells to apoptosis melanoma as a model. Int Rev Cytol 251:131–158

    Article  CAS  PubMed  Google Scholar 

  26. Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13:7254–7263

    Article  CAS  PubMed  Google Scholar 

  27. Forte M, Bernardi P (2006) The permeability transition and BCL-2 family proteins in apoptosis: co-conspirators or independent agents? Cell Death Differ 13:1287–1290

    Article  CAS  PubMed  Google Scholar 

  28. Pham CG, Bubici C, Zazzeroni F et al (2007) Upregulation of Twist-1 by NF-kappaB blocks cytotoxicity induced by chemotherapeutic drugs. Mol Cell Biol 27:3920–3935

    Article  CAS  PubMed  Google Scholar 

  29. Osford SM, Dallman CL, Johnson PW, Ganesan A, Packham G (2004) Current strategies to target the anti-apoptotic Bcl-2 protein in cancer cells. Curr Med Chem 11:1031–1039

    Article  PubMed  Google Scholar 

  30. Kramer A, Lukas J, Bartek J (2004) Checking out the centrosome. Cell Cycle 3:1390–1393

    CAS  PubMed  Google Scholar 

  31. McDermott KM, Zhang J, Holst CR et al (2006) p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol 4:e51

    Article  PubMed  Google Scholar 

  32. Loeb LA, Bielas JH, Beckman RA (2008) Cancers exhibit a mutator phenotype: clinical implications. Cancer Res 68:3551–3557

    Article  CAS  PubMed  Google Scholar 

  33. Kuilman T, Michaloglou C, Vredeveld LC et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031

    Article  CAS  PubMed  Google Scholar 

  34. Acosta JC, O’Loghlen A, Banito A, Raguz S, Gil J (2008) Control of senescence by CXCR2 and its ligands. Cell Cycle 7:2956–2959

    CAS  PubMed  Google Scholar 

  35. Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299

    Article  CAS  PubMed  Google Scholar 

  36. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73

    Article  CAS  PubMed  Google Scholar 

  37. Baguley BC (2006) Tumor stem cell niches: a new functional framework for the action of anticancer drugs. Recent Pat Anticancer Drug Discov 1:121–127

    Article  CAS  PubMed  Google Scholar 

  38. Fonseca C, Dranoff G (2008) Capitalizing on the immunogenicity of dying tumor cells. Clin Cancer Res 14:1603–1608

    Article  CAS  PubMed  Google Scholar 

  39. Hadnagy A, Gaboury L, Beaulieu R, Balicki D (2006) SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 312:3701–3710

    Article  CAS  PubMed  Google Scholar 

  40. Keshet GI, Goldstein I, Itzhaki O et al (2008) MDR1 expression identifies human melanoma stem cells. Biochem Biophys Res Commun 368:930–936

    Article  CAS  PubMed  Google Scholar 

  41. Ozben T (2006) Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett 580:2903–2909

    Article  CAS  PubMed  Google Scholar 

  42. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  CAS  PubMed  Google Scholar 

  43. Baguley BC (2002) Novel strategies for overcoming multidrug resistance in cancer. BioDrugs 16:97–103

    Article  CAS  PubMed  Google Scholar 

  44. Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA (2008) Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci USA 105:12128–12133

    Article  CAS  PubMed  Google Scholar 

  45. Robbie MA, Baguley BC, Denny WA, Gavin JB, Wilson WR (1988) Mechanism of resistance of noncycling mammalian cells to 4′-(9- acridinylamino)methanesulfon-m-anisidide: comparison of uptake, metabolism, and DNA breakage in log- and plateau-phase Chinese hamster fibroblast cell cultures. Cancer Res 48:310–319

    CAS  PubMed  Google Scholar 

  46. Haldane A, Finlay GJ, Hay MP, Denny WA, Baguley BC (1999) Cellular uptake of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA). Anticancer Drug Des 14:275–280

    CAS  PubMed  Google Scholar 

  47. Davey RA, Su GM, Hargrave RM et al (1997) The potential of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide to circumvent three multidrug-resistance phenotypes in vitro. Cancer Chemother Pharmacol 39:424–430

    Article  CAS  PubMed  Google Scholar 

  48. Foster BA, Coffey HA, Morin MJ, Rastinejad F (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286:2507–2510

    Article  CAS  PubMed  Google Scholar 

  49. Sebolt-Leopold JS (2004) MEK inhibitors: a therapeutic approach to targeting the Ras-MAP kinase pathway in tumors. Curr Pharm Des 10:1907–1914

    Article  CAS  PubMed  Google Scholar 

  50. Serra V, Markman B, Scaltriti M et al (2008) NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68:8022–8030

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen M, Marcellus RC, Roulston A et al (2007) Small molecule obatoclax (GX15–070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 104:19512–19517

    Article  CAS  PubMed  Google Scholar 

  52. Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5:297–309

    Article  CAS  PubMed  Google Scholar 

  53. Wang W, McLeod HL, Cassidy J (2003) Disulfiram-mediated inhibition of NF-kappaB activity enhances cytotoxicity of 5-fluorouracil in human colorectal cancer cell lines. Int J Cancer 104:504–511

    Article  CAS  PubMed  Google Scholar 

  54. Claus R, Lubbert M (2003) Epigenetic targets in hematopoietic malignancies. Oncogene 22:6489–6496

    Article  CAS  PubMed  Google Scholar 

  55. Chen R, Alvero AB, Silasi DA, Steffensen KD, Mor G (2008) Cancers take their Toll – the function and regulation of Toll-like receptors in cancer cells. Oncogene 27:225–233

    Article  CAS  PubMed  Google Scholar 

  56. Hicks AM, Riedlinger G, Willingham MC et al (2006) Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci USA 103:7753–7758

    Article  CAS  PubMed  Google Scholar 

  57. Panaretakis T, Joza N, Modjtahedi N et al (2008) The co-translocation of ERp57 and calreticulin determines the immunogeni­city of cell death. Cell Death Differ 15:1499–1509

    Article  CAS  PubMed  Google Scholar 

  58. Baguley BC, Marshall ES (2004) In vitro modelling of human tumour behaviour in drug discovery programmes. Eur J Cancer 40:794–801

    Article  CAS  PubMed  Google Scholar 

  59. Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7:545–553

    Article  CAS  PubMed  Google Scholar 

  60. Samson DJ, Seidenfeld J, Ziegler K, Aronson N (2004) Chemotherapy sensitivity and resistance assays: a systematic review. J Clin Oncol 22:3618–3630

    Article  CAS  PubMed  Google Scholar 

  61. Garcia-Barros M, Paris F, Cordon-Cardo C et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  CAS  PubMed  Google Scholar 

  62. Vit JP, Rosselli F (2003) Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis. Oncogene 22:8645–8652

    Article  CAS  PubMed  Google Scholar 

  63. Duff MD, Mestre J, Maddali S et al (2007) Analysis of gene expression in the tumor-associated macrophage. J Surg Res 142:119–128

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. Baguley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Baguley, B.C. (2010). Multidrug Resistance in Cancer. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics