Skip to main content

Establishment, Culture, and Scale-up of Brugmansia candida Hairy Roots for the Production of Tropane Alkaloids

  • Protocol
  • First Online:
Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, Second Edition

Abstract

Brugmansia candida (syn. Datura candida) is a South American native plant that produces tropane alkaloids. Hyoscyamine, 6β-hydroxyhyoscyamine (anisodamine), and scopolamine are the most important ones due to their anticholinergic activity. These bioactive compounds have been historically and widely applied in medicine and their demand is continuous. Their chemical synthesis is costly and complex, and thereby, these alkaloids are industrially produced from natural producer plants. The production of these secondary metabolites by plant in vitro cultures such as hairy roots presents certain advantages over the natural source and chemical synthesis. It is well known that hairy roots produced by Agrobacterium rhizogenes infection are fast-growing cultures, genetically stable and able to grow in hormone-free media. Additionally, recent progress achieved in the scaling up of hairy root cultures makes this technology an attractive tool for industrial processes. This chapter is focused on the methods for the induction and establishment of B. candida hairy roots. In addition, the scaling up of hairy root cultures in bioreactors and tropane alkaloid analysis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oksman-Caldentey KM (2007) Tropane and nicotine alkaloid biosynthesis-novel approaches towards biotechnological production of plant-derived pharmaceuticals. Curr Pharm Biotechnol 8(4):203–210

    Article  CAS  PubMed  Google Scholar 

  2. Bedewitz MA, Gongora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo YS, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS (2014) A root-expressed l-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. Plant Cell 26(9):3745–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hashimoto T, Yamada Y (1986) Hyoscyamine 6beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures. Plant Physiol 81(2):619–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poupko JM, Baskin SI, Moore E (2006) The pharmacological properties of anisodamine. J Appl Toxicol 27(2):116–121

    Article  Google Scholar 

  5. Wang TN, Yang HJ, Gu-Ling, Li JY, Zheng XX (2005) Advanced measurement and quantitative appraise of anisodamine on calcium triggered in cardiac myocyte. In: Engineering in medicine and biology 27th annual conference, Shanghai, China, 1–4 Sept 2005. Proceedings of the 2005 IEEE. pp 7710–7713

    Google Scholar 

  6. Wang PY, Chen JW, Hwang F (1993) Anisodamine causes acyl chain interdigitation in phosphatidylglycerol. FEBS Lett 332(1–2):193–196

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, Lu Y, Chen HZ (2003) Differentiating effects of anisodamine on cognitive amelioration and peripheral muscarinic side effects induced by pilocarpine in mice. Neurosci Lett 344(3):173–176

    Article  CAS  PubMed  Google Scholar 

  8. Sheng CY, Gao WY, Guo ZR, He LX (1997) Anisodamine restores bowel circulation in burn shock. Burns 23(2):142–146

    Article  CAS  PubMed  Google Scholar 

  9. Kursinszki L, Hank H, Laszlo I, Szoke E (2005) Simultaneous analysis of hyoscyamine, scopolamine, 6beta-hydroxyhyoscyamine and apoatropine in Solanaceous hairy roots by reversed-phase high-performance liquid chromatography. J Chromatogr A 1091(1–2):32–39

    Article  CAS  PubMed  Google Scholar 

  10. Palazón J, Moyano E, Cusidó RM, Bonfill M, Oksman-Caldentey K, Piñol MT (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165(6):1289–1295

    Article  Google Scholar 

  11. Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci U S A 101(17):6786–6791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dehghan E, Hakkinen ST, Oksman-Caldentey KM, Shahriari Ahmadi F (2012) Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). Plant Cell Tiss Org Cult 110(1):35–44

    Article  CAS  Google Scholar 

  13. Samuelsson G (ed) (1999) Drugs of natural origin, 4th edn. Gunnar Samuelsson and Apotekarsocieteten-Swedish Pharmaceutical Society, Swedish Pharmaceutical Press, Sweden

    Google Scholar 

  14. Palazon J, Navarro-Ocana A, Hernandez-Vazquez L, Mirjalili MH (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13(8):1722–1742

    Article  CAS  PubMed  Google Scholar 

  15. Naumann A, Kurtze L, Krahmer A, Hagels H, Schulz H (2014) Discrimination of Solanaceae taxa and quantification of scopolamine and hyoscyamine by ATR-FTIR spectroscopy. Planta Med 80(15):1315–1320

    Article  CAS  PubMed  Google Scholar 

  16. Roses OE, Miño J, Villamil EC (1988) Acción farmacodinámica de las flores de Brugmansia candida. Fitoterapia 59:120–127

    Google Scholar 

  17. Giulietti AM, Parr AJ, Rhodes MJ (1993) Tropane alkaloid production in transformed root cultures of Brugmansia candida. Planta Med 59(5):428–431

    Google Scholar 

  18. Wu YF, Lü W, Lu Q, Zhang WS (2005) Asymmetric synthesis of anisodine. Chin Chem Lett 16(10):1287–1289

    CAS  Google Scholar 

  19. Cardillo AB, Otalvaro Alvarez AM, Calabro Lopez A, Velasquez Lozano ME, Rodriguez Talou J, Giulietti AM (2010) Anisodamine production from natural sources: seedlings and hairy root cultures of Argentinean and Colombian Brugmansia candida plants. Planta Med 76(4):402–405

    Article  CAS  PubMed  Google Scholar 

  20. Diwan R, Malpathak N (2008) Novel technique for scaling up of micropropagated Ruta graveolens shoots using liquid culture systems: a step towards commercialization. N Biotechnol 25(1):85–91

    Article  CAS  PubMed  Google Scholar 

  21. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    Article  CAS  PubMed  Google Scholar 

  22. Jaremicz Z, Luczkiewicz M, Kokotkiewicz A, Krolicka A, Sowinski P (2014) Production of tropane alkaloids in Hyoscyamus niger (black henbane) hairy roots grown in bubble-column and spray bioreactors. Biotechnol Lett 36(4):843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9(3):341–346

    Article  CAS  PubMed  Google Scholar 

  24. Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598

    Article  CAS  Google Scholar 

  25. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  CAS  PubMed  Google Scholar 

  26. Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26(4):318–324

    Article  CAS  PubMed  Google Scholar 

  27. Nemoto K, Hara M, Suzuki M, Seki H, Oka A, Muranaka T, Mano Y (2009) Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. Plant Signal Behav 4(12):1145–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica, Argentina (ANPCyT), by grants UBACyT 181, PIP 0156, and PICT 2125. A.B.C., J.R.T., and A.M.G. are researchers from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Beatriz Cardillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cardillo, A.B., Rodriguez Talou, J., Giulietti, A.M. (2016). Establishment, Culture, and Scale-up of Brugmansia candida Hairy Roots for the Production of Tropane Alkaloids. In: Jain, S. (eds) Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, Second Edition. Methods in Molecular Biology, vol 1391. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3332-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3332-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3330-3

  • Online ISBN: 978-1-4939-3332-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics