Skip to main content

Hairy Root Cultures: A Versatile Tool for Bioactive Compound Production

  • Chapter
  • First Online:
Biosynthesis of Bioactive Compounds in Medicinal and Aromatic Plants

Part of the book series: Food Bioactive Ingredients ((FBC))

  • 237 Accesses

Abstract

“Hairy root” finds its route through a century-long path, from being a disease to a tool for enhanced production of bioactive compounds, the essence of which lies on the “natural genetic engineer” Rhizobium rhizogenes. To date, hairy root cultures have been established in hundreds of plant species including several threatened species, offering opportunities to produce a large amount of bioactive compounds in an eco-friendly manner. Diverse strategies are being supplemented to enhance the production of desired metabolites from hairy root culture. A combination of strategies, along with upscaling of the hairy root culture, is a way forward for the commercial production of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Rahman L, Uniyal GC, Ahuja PS (1998) Enhanced production of valepotriates by Agrobacterium rhizogenes induced hairy root cultures of Valeriana wallichii DC. Plant Sci 131:203–208

    Article  CAS  Google Scholar 

  • Bansal M, Kumar A, Reddy MS (2014) Influence of Agrobacterium rhizogenes strains on hairy root induction and ‘bacoside A’ production from Bacopa monnieri (L.) Wettst. Acta Physiol Plant 36:2793–2801

    Article  CAS  Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) TDNA from Agrobacterium Ti plasmid is in the nuclear DNA of crown gall tumour cells. Proc Natl Acad Sci USA 77:4060–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deus-Neumann B, Zenk MH (1984) Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Med 50:427–431

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Dey PM, Murphy DL, Whitehead IM (1981) Dose responses for Colletotrichum lindemuthianum elicitor-mediated enzyme induction in French bean cell suspension cultures. Planta 151:272–280

    Article  CAS  PubMed  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  CAS  PubMed  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Technol 74:1175–1185

    Article  CAS  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    Article  CAS  PubMed  Google Scholar 

  • Granischer F, Christen P, Kapetanidis I (1992) High yield production of valepotriates by hairy root cultures of Valeriana officinalis L. var. sambucifolia Mikan. Plant Cell Rep 11:339–342

    Google Scholar 

  • Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    Article  CAS  PubMed  Google Scholar 

  • Halder M, Sarkar S, Jha S (2019) Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 19(12):880–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SH, Vishwakarma RK, Lee TT, Chan HS, Tsay HS (2014) Establishment of hairy root lines and analysis of iridoids and secoiridoids in the medicinal plant Gentiana scabra. Bot Stud 55:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276

    Article  CAS  PubMed  Google Scholar 

  • Hussain MJ, Abbas Y, Nazli N, Fatima S, Drouet S, Hano C, Abbasi BH (2022) Root cultures, a boon for the production of valuable compounds: a comparative review. Plan Theory 11(3):439

    CAS  Google Scholar 

  • Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L (2011) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13:319–327

    Article  CAS  PubMed  Google Scholar 

  • Kamada H, Okamura N, Satake M, Harada H, Shimomura K (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep 5:239–242

    Article  CAS  PubMed  Google Scholar 

  • Keen NT (1975) Specific elicitors of plant phytoalexin production: determinants of race specificity in pathogens? Science 187(4171):74–75

    Article  CAS  PubMed  Google Scholar 

  • Marwani E, Pratiwi D, Wardhani K, Esyanti R (2015) Development of hairy root culture of Andrographis paniculata for in vitro adrographolide production. J Med Bioeng 4:446–450

    CAS  Google Scholar 

  • Mehrotra S, Goel MK, Srivastava V, Rahman LU (2015) Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids. Biotechnol Lett 37:253–263

    Article  CAS  PubMed  Google Scholar 

  • Ngoc PB, Pham TB, Nguyen HD, Tran TT, Chu HH, Chau VM, Lee JH, Nguyen TD (2016) A new anti-inflammatory β-carboline alkaloid from the hairy-root cultures of Eurycoma longifolia. Nat Prod Res 30:1360–1365

    Article  CAS  PubMed  Google Scholar 

  • Ooi CT, Syahida A, Stanslas J, Maziah M (2016) The influence of methyl jasmonate, cholesterol and l-arginine on solasodine production in hairy root culture of Solanum mammosum. Eng Life Sci 16(5):432–442

    Article  CAS  Google Scholar 

  • Ozyigit II, Dogan I, Tarhan EA (2013) Agrobacterium rhizogenes-mediated transformation and its biotechnological applications in crops. In: Crop improvement. Springer, Boston, pp 1–48

    Google Scholar 

  • Patra N, Srivastava AK (2014) Enhanced production of Artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor. Appl Biochem Biotechnol 174:2209–2222

    Article  CAS  PubMed  Google Scholar 

  • Patra N, Srivastava AK (2016) Artemisinin production by plant hairy root cultures in gas-and liquid-phase bioreactors. Plant Cell Rep 35:143–153

    Article  CAS  PubMed  Google Scholar 

  • Payne J, Hamill JD, Robins RJ, Rhodes MJC (1987) Production of hyoscyamine by ‘hairy root’ cultures of Datura stramonium. Planta Med 53:474–478

    Article  CAS  PubMed  Google Scholar 

  • Riker AJ, Hildebrand EM (1934) Seasonal development of hairy root, crown gall, and wound overgrowth on apple trees in the nursery. J Agric Res 48:887–912

    Google Scholar 

  • Riker AJ, Banfield WM, Wright WH, Keitt GW, Sagen HE (1930) Studies on infectious hairy root of nursery apple trees. J Agric Res 41:507–540

    Google Scholar 

  • Schell J, Montago MV, De Beuckeleer M, De Block M, Depicker A, De Wilde M, Engler G, Genetello C, Hernalsteens JP, Holsters M, Seurinck J (1979) Interaction and interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host. Proc R Soc Lond B 204:251–266

    Article  CAS  PubMed  Google Scholar 

  • Sharmila R, Subburathinam KM (2013) Effect of signal compounds on andrographolide in the hairy root cultures of Andrographis paniculata. Int J Pharm Sci Res 4:1773–1776

    CAS  Google Scholar 

  • Singh S, Banerjee M, Kumar M (2017) An efficient protocol for plant regeneration of Phlogacanthus thyrsiflorus Nees: an important medicinal shrub. In: Applications of biotechnology for sustainable development. Springer, Singapore, pp 15–20

    Chapter  Google Scholar 

  • Singh S, Banerjee M, Kumar M (2020) Rhizobium rhizogenes mediated hairy root transformation and analysis of secondary metabolites in Phlogacanthus thyrsiflorus Nees hairy roots using GC-MS. J Sci Ind Res 79:590–594

    CAS  Google Scholar 

  • Sivanandhan G, Selvaraj N, Ganapathi A, Manickavasagam M (2014) An efficient hairy root culture system for Withania somnifera (L.) Dunal. Afr J Biotechnol 13:4141–4147

    Article  Google Scholar 

  • Spano L, Mariotti D, Pezzotti M, Damiani F, Arcioni S (1987) Hairy root transformation in alfalfa (Medicago sativa L.). TAG Theor Appl Genet 73(4):523–530

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Peebles CA (2016) Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. Protoplasma 253:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Tian L (2015) Using hairy roots for production of valuable plant secondary metabolites. In: Filaments in bioprocesses. Springer, Cham, pp 275–324

    Chapter  Google Scholar 

  • Toivonen L (1993) Utilization of hairy root cultures for production of secondary metabolites. Biotechnol Prog 9:12–20

    Article  CAS  Google Scholar 

  • Ur Rahman L., Ikenaga T, Kitamura Y (2004) Penicillin derivatives induce chemical structure-dependent root development, and application for plant transformation. Plant Cell Rep 22: 668–677

    Google Scholar 

  • Vazquez-Flota FA, De Luca V (1998) Developmental and light regulation of desacetoxyvindoline 4-hydroxylase in Catharanthus roseus (L.) G. Don. Evidence of a multilevel regulatory mechanism. Plant Physiol 117(4):1351–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma PC, Rahman L, Negi AS, Jain DC, Khanuja SPS, Banerjee S (2007) Agrobacterium rhizogenes-mediated transformation of Picrorhiza kurroa Royle ex Benth: establishment and selection of superior hairy root clone. Plant Biotechnol Rep 1:169–174

    Article  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Vladimirov IA, Matveeva TV, Lutova LA (2015) Opine Biosynthesis and Catabolism Genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Russian Journal of Genetics 51:121–129

    Google Scholar 

  • Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L.(St. John’s wort). Phytochemistry 60(3):289–293

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang H, Zhao B, Yuan X (2001) Improved growth of Artemisia annua L hairy roots and artemisinin production under red light conditions. Biotechnol Lett 23:1971–1973

    Article  CAS  Google Scholar 

  • White FF, Ghidossi G, Gordon MP, Nester EW (1982) Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci 79:3193–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie D, Zou Z, Ye H, Li H, Guo Z (2001) Selection of hairy root clones of Artemisia annua L. for artemisinin production. Isr J Plant Sci 49:129–134

    Article  CAS  Google Scholar 

  • Yoshimatsu K (2008) Tissue culture of medicinal plants: micropropagation, transformation and production of useful secondary metabolites. Stud Nat Prod Chem 34:647–752

    Article  CAS  Google Scholar 

  • Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 36:215–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Birla Institute of Technology, Mesra, Ranchi and Birsa Agricultural University, Ranchi for providing infrastructure support throughout the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Kumar, M. (2023). Hairy Root Cultures: A Versatile Tool for Bioactive Compound Production. In: Kumar, N., S. Singh, R. (eds) Biosynthesis of Bioactive Compounds in Medicinal and Aromatic Plants. Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-031-35221-8_7

Download citation

Publish with us

Policies and ethics