Skip to main content
Log in

The mode of action of quinolones: The paradox in activity of low and high concentrations and activity in the anaerobic environment

  • Review
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

All 4-quinolones that have been examined display rapid bactericidal activity which is biphasic. At concentrations above the MIC, the lethality of the drugs increases until a concentration known as the optimum bactericidal concentration (OBC) beyond which the bactericidal activity then declines. The biphasic response appears to be due to the inhibition of RNA synthesis at concentrations above the OBC, as RNA synthesis is required for the full bactericidal activity of the 4-quinolones. However, differences in the biphasic response are observed as some fluoroquinolones are still able to kill bacteria in the absence of bacterial protein or RNA synthesis, thus reducing the inhibition of bactericidal activity at concentrations above the OBC. It has been proposed that this ability to kill bacteria in the absence of protein or RNA synthesis is due to the possession of an additional bactericidal mechanism by these fluoroquinolones. Oxygen also appears to be essential for the lethality of the clinically available 4-quinolones although it is not required for the drugs to inhibit bacterial multiplication. Therefore these drugs are not bactericidal under anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lesher GY, Froelich EJ, Gruett MD, Bailey JD, Brundage RP 1,8-naphthyridine derivatives, a new class of chemotherapy agents. Journal of Medicinal Chemistry 1962, 5: 1063–1065.

    Article  Google Scholar 

  2. Wang, JC DNA topoisomerases. Annual Review of Biochemistry 1985, 54: 665–697.

    Article  PubMed  Google Scholar 

  3. Drlica K, Franco RJ Inhibitors of DNA topoisomerases. Biochemistry 1988, 27: 2254–2259.

    Article  Google Scholar 

  4. Lewin CS, Allen RA, Amyes SGB Potential mechanisms of resistance to the modern fluorinated 4-quinolones. Journal of Medical Microbiology 1990, 31: 153–161.

    PubMed  Google Scholar 

  5. Piddock LJV, Wise R Mechanisms of resistance to 4-quinolones and clinical perspectives. Journal of Antimicrobial Chemotherapy 1989, 23: 475–480.

    PubMed  Google Scholar 

  6. Hooper DG, Wolfson JS, Ng EY, Swartz, MN Mechanisms of action and resistance to ciprofloxacin. American Journal of Medicine 1987, 82, Supplement 4A: 12–20.

    PubMed  Google Scholar 

  7. Shen LL, Pernet AG Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA. Proceedings of the National Academy of Sciences of the USA 1985, 82: 307–311.

    PubMed  Google Scholar 

  8. Shen LL, Mitscher LA, Sharma PN, O'Donnell TJ, Chu DWT, Cooper CS, Rosen T, Pernet AG Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug-DNA binding model. Biochemistry 1989, 28: 3886–3894.

    Google Scholar 

  9. Smith JT Awakening the slumbering potential of the 4-quinolone antibiotics. Pharmaceutical Journal 1984, 233: 299–305.

    Google Scholar 

  10. Smith JT, Lewin CS Chemistry and mechanisms of action of the quinolone antibacterials. In: Andriole VT (ed): The quinolones. Academic Press, London 1988, p. 23–82.

    Google Scholar 

  11. Goss WA, Dietz WH, Cook TM Mechanism of action of nalidixic acid onEscherichia coli. Journal of Bacteriology 1964, 88: 1112–1118.

    PubMed  Google Scholar 

  12. Crumplin GC, Kenwright M, Hirst T Investigations into the mechanism of action of the antibacterial agent norfloxacin. Journal of Antimicrobial Chemotherapy 1984, 13, Supplement B: 9–23.

    Google Scholar 

  13. Diver JM, Wise R Morphological and biochemical changes inEscherichia coli after exposure to ciprofloxacin. Journal of Antimicrobial Chemotherapy 1986, 18, Supplement D: 31–34.

    Google Scholar 

  14. Nishino T, Tanaka M, Ohtsuki M Effect of ofloxacin on the ultrastructure ofEscherichia coli andPseudomonas aeruginosa in the logarithmic and stationary phases of growth. Reviews of Infectious Diseases 1989, 11, Supplement 5: 914–915.

    Google Scholar 

  15. Lewin CS, Amyes SGB Bactericidal activity of DR-3355, an optically active isomer of ofloxacin. Journal of Medical Microbiology 1989, 30: 227–231.

    PubMed  Google Scholar 

  16. Lewin CS, Amyes SGB, Smith JT Bactericidal activity of enoxacin and lomefloxacin againstEscherichia coli KL16. European Journal of Clinical Microbiology 1989, 8: 731–733.

    Article  Google Scholar 

  17. Lewin CS, Amyes SGB Conditions required for the bactericidal activity of pefloxacin and fleroxacin againstEscherichia coli KL16. Journal of Medical Microbiology 1990, 32: 83–86.

    PubMed  Google Scholar 

  18. Piddock LJV, Andrews JM, Diver JM, Wise R In vitro studies of S25930 and S25932, two new 4-quinolones. European Journal of Clinical Microbiology 1986, 5: 303–310.

    PubMed  Google Scholar 

  19. Lewin CS, Smith JT Conditions required for the bactericidal activity of the 4-quinolones againstSerratia marcescens. Journal of Medical Microbiology 1990, 32: 211–214.

    PubMed  Google Scholar 

  20. Lewin CS, Smith JT Bactericidal mechanisms of ofloxacin. Journal of Antimicrobial Chemotherapy 1988, 22, Supplement C: 1–8.

    Google Scholar 

  21. Crumplin GC, Smith JT Nalidixic acid, an antibacterial paradox. Antimicrobial Agents and Chemotherapy 1975, 8: 251–261.

    PubMed  Google Scholar 

  22. Wang JC Interactions between DNAs and enzymes: the effect of superhelical turns. Journal of Molecular Biology 1974, 87: 797–816.

    Article  PubMed  Google Scholar 

  23. Dietz WH, Cook TM, Goss WA Mechanism of action of nalidixic acid onEscherichia coli. III: Conditions required for lethality. Journal of Bacteriology 1966, 91: 768–773.

    PubMed  Google Scholar 

  24. Zeiler HJ, Groche K The in vivo and in vitro activity of ciprofloxacin. European Journal of Clinical Microbiology 1984, 4: 339–343.

    Google Scholar 

  25. Chalkley LJ, Koornhof HJ Antimicrobial activity of ciprofloxacin againstPseudomonas aeruginosa, Escherichia coli andStaphylococcus aureus determined by the killing curve method: antibiotic comparisons and synergistic interactions. Antimicrobial Agents and Chemotherapy 1985, 28: 331–342.

    PubMed  Google Scholar 

  26. Ratcliffe NT, Smith JT: Norfloxacin has a novel bactericidal mechanism unrelated to that of other 4-quinolones. Journal of Pharmacy and Pharmacology 1985, 37: 92P.

  27. Thomas A, Tocher J, Edwards DI Electromechanical characteristics of five quinolone drugs and their effect on DNA damage and repair inEscherichia coli. Journal of Antimicrobial Chemotherapy 1990, 25: 733–744.

    PubMed  Google Scholar 

  28. Phillips I, Culebras E, Moreno F, Baquero F Induction of the SOS response by new 4-quinolones. Journal of Antimicrobial Chemotherapy 1987, 20: 771–773.

    PubMed  Google Scholar 

  29. Walters RN, Piddock LJV, Wise R The effect of mutations in the SOS response on the kinetics of quinolone killing. Journal of Antimicrobial Chemotherapy 1989, 24: 863–873.

    PubMed  Google Scholar 

  30. McDaniel LS, Rogers LH, Hill WE Survival of recombination-deficient mutants ofEscherichia coli during incubation with nalidixic acid. Journal of Bacteriology 1978, 134: 1195–1198.

    PubMed  Google Scholar 

  31. Lewin CS, Howard BMA, Rateliffe NT, Smith JT 4-quinolones and the SOS response. Journal of Medical Microbiology 1989, 29: 139–144.

    PubMed  Google Scholar 

  32. Cook TM, Dietz WH, Goss WA Mechanism of action of nalidixic acid onEscherichia coli. IV: Effects on the stability of cellular constituents. Journal of Bacteriology 1966, 91: 774–779.

    PubMed  Google Scholar 

  33. Lewin CS, Smith JT DNA breakdown by the 4-quinolones and its significance. Journal of Medical Microbiology 1990, 31: 65–70.

    PubMed  Google Scholar 

  34. Dalhoff A: Interaction of aminoglycosides and ciprofloxacin with bacterial membranes. In: Adam D, Hahn H, Opferkuch W (ed): The influence of antibiotics on the host-parasite relationship. Volume 2. Springer Verlag, Berlin, p. 16–27.

  35. Lewin CS, Howard BMA, Smith JT Protein and RNA synthesis independent bactericidal activity of ciprofloxacin involving the A subunit of DNA gyrase. Journal of Medical Microbiology 1991, 34: 19–22.

    PubMed  Google Scholar 

  36. Chin NX, Neu HC In vitro activity of enoxacin, a quinolone carboxylic acid, compared to those of norfloxacin, new beta-lactams, aminoglycosides and trimethoprim. Antimicrobial Agents and Chemotherapy 1983, 24: 754–763.

    PubMed  Google Scholar 

  37. Ratcliffe NT, Smith JT: Effects of magnesium on the activity of 4-quinolone antibacterial agents. Journal of Pharmacy and Pharmacology 1983, 35: 61P.

  38. Ratcliffe NT, Smith JT Ciprofloxacin's bactericidal and inhibitory activity in urine. Chemioterapia 1985, 4, Supplement 2: 385–386.

    Google Scholar 

  39. Morrissey I, Lewin CS, Smith JT The influence of oxygen upon bactericidal potency. In: G.C. Crumplin (ed): The 4-quinolones: antibacterial agents in vitro. Springer Verlag, London, 1990, p. 23–36.

    Google Scholar 

  40. Lewin CS, Morrissey I, Smith JT The role of oxygen in the bactericidal action on the 4-quinolones. Reviews of Infectious Diseases 1989, 11, Supplement 5: 913–914.

    Google Scholar 

  41. Sheftel TG, Mader JT Randomised evaluation of ceftazidime or ticarcillin and tobramycin for the treatment of osteomyclitis caused by gram-negative bacilli. Antimicrobial Agents and Chemotherapy 1986, 29: 112–115.

    PubMed  Google Scholar 

  42. Gilbert DN, Tice AD, Marsh PK, Craven PC, Preihem LC Oral ciprofloxacin therapy for chronic contiguous osteomyelitis caused by aerobic gram-negative bacilli. American Journal of Medicine 1987, 82, Supplement 4A: 254–258.

    Article  PubMed  Google Scholar 

  43. Brumfitt W, Franklin I, Grady D, Hamilton-Miller JMT Changes in pharmacokinetics of ciprofloxacin and faecal flora during administration of a seven-day course to human volunteers. Antimicrobial Agents and Chemotherapy 1984, 26: 757–761.

    PubMed  Google Scholar 

  44. Pecquet S, Andrement A, Tancrede C Effect of oral ofloxacin on faecal bacteria in human volunteers. Antimicrobial Agents and Chemotherapy 1987, 31: 124–125.

    PubMed  Google Scholar 

  45. Pecquet S, Andremond A, Tancrede C Selective antimicrobial modulation of the intestinal tract by norfloxacin in human volunteers and gnotobiotic mice associated with human faecal flora. Antimicrobial Agents and Chemotherapy 1986, 29: 1047–1052.

    PubMed  Google Scholar 

  46. Ball P Ciprofloxacin: an overview of adverse experiences. Journal of Antimicrobial Chemotherapy 1986, 18, Supplement D: 187–194.

    PubMed  Google Scholar 

  47. Hoffken G, Borner K, Glatzel PD, Koeppe P, Lode H Reduced enteral absorption of ciprofloxacin in the presence of antacids. European Journal of Clinical Microbiology 1985, 4: 345.

    Google Scholar 

  48. Fleming LW, Moreland TA, Steward WK, Scott AC Ciprofloxacin and antacids. Lancet 1986, ii: 294.

    Article  Google Scholar 

  49. Golper TA, Hartstein AI, Morthland VH, Christensen JM Effects of antacids and dialysate dwell times on multiple-dose pharmacokinetics of oral ciprofloxacin in patients on continuous ambulatory peritonial dialysis. Antimicrobial Agents and Chemotherapy 1987, 31: 1787–1790.

    PubMed  Google Scholar 

  50. Grasela TH, Schentag JJ, Sedman AJ, Wilton JH, Thomas DJ, Schultz RW, Lebsack ME, Kinkel AW Inhibition of enoxacin absorption by antacids or rantidine. Antimicrobial Agents and Chemotherapy 1989, 33: 615–617.

    PubMed  Google Scholar 

  51. Polk RE, Healy DP, Sahai J, Drwal L, Racht E Effect of ferrous sulphate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers. Antimicrobial Agents and Chemotherapy 1989, 33: 1841–1844.

    PubMed  Google Scholar 

  52. Hancock R Uptake of 14C streptomycin by some microorganisms and its relation to their streptomycin sensitivity. Journal of General Microbiology 1962, 28: 493–501.

    PubMed  Google Scholar 

  53. Andry K, Bockrath RC Dihydrostreptomycin accumulation inEscherichia coli. Nature 1974, 251: 534–536.

    PubMed  Google Scholar 

  54. Bryan LE, Van den Elzen HM Streptomycin accumulation in susceptible and resistant strains ofEscherichia coli andPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1976, 9: 928–938.

    PubMed  Google Scholar 

  55. Miller MH, Edberg SC, Mandel LJ, Behar CF, Steigbigel NH Gentamicin uptake in wild-type and aminoglycoside-resistant small-colony mutants ofStaphylococcus aureus. Antimicrobial Agents and Chemotherapy 1980, 18: 722–729.

    PubMed  Google Scholar 

  56. Mates SM, Patel L, Kaback HR, Miller MH Membrane potential in anaerobically growingStaphylococcus aureus and its relationship to gentamicin uptake. Antimicrobial Agents and Chemotherapy 1983, 23: 526–530.

    PubMed  Google Scholar 

  57. Bedard J, Wong S, Bryan LE Accumulation of enoxacin byEscherichia coli andBacillus subtilis. Antimicrobial Agents and Chemotherapy 1987, 91: 1384–1354.

    Google Scholar 

  58. Chapman JS, Georgopapadakou NH Routes of quinolone permeation inEscherichia coli. Antimicrobial Agents and Chemotherapy 1988, 32: 438–442.

    PubMed  Google Scholar 

  59. Diver JM, Piddock LJV, Wise R The accumulation of five quinolone antibacterial agents byEscherichia coli. Journal of Antimicrobial Chemotherapy 1990, 25: 319–333.

    PubMed  Google Scholar 

  60. Yamamoto N, Droffner ML Mechanisms determining aerobic or anaerobic growth in the facultative anaerobeSalmonella typhimurium. Proceedings of the National Academcy of Sciences of the USA 1985, 82: 2077–2081.

    Google Scholar 

  61. Dorman CJ, Barr GC, Bhrain NN, Higgins CF DNA supercoiling and the aerobic and growth phase regulation of tonB gene expression. Journal of Bacteriology 1988, 170: 2816–2826.

    PubMed  Google Scholar 

  62. Higgins CF, Dorman CJ, Stirling DA, Waddel L, Booth IR, May G, Bremer E A physiological role for DNA supercoiling in the osmotic control of gene expression inSalmonella typhimurium andEscherichia coli. Cell 1988, 52: 569–584.

    PubMed  Google Scholar 

  63. Bhrain NN, Dorman CJ, Higgins CF An overlap between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression. Molecular Microbiology 1989, 3: 933–942.

    PubMed  Google Scholar 

  64. Hirai K, Aoyama H, Irikura T, Iyobe S, Mitsuhashi S Differences in susceptibility to quinolones of outer membrane mutants ofSalmonella typhimurium andEscherichia coli. Antimicrobial Agents and Chemotherapy 1986, 29: 535–538.

    PubMed  Google Scholar 

  65. Hirai K, Aoyama H, Suzue S, Irikuru T, Iyobe S, Mitsuhashi S Isolation and characterisation of norfloxacinresistant mutants ofEscherichia coli K12. Antimicrobial Agents and Chemotherapy 1986, 30: 248–253.

    PubMed  Google Scholar 

  66. Hooper DC, Wolfson JS, Souza KS, Tung C, McHugh GL, Swartz MN Genetic and biochemical characterisation of norfloxacin resistance inEscherichia coli. Antimicrobial Agents and Chemotherapy 1986, 29: 639–644.

    PubMed  Google Scholar 

  67. Wise R, Ashby JP, Andrews JM In vitro activity of PD 127, 391, an enhanced-spectrum quinolone. Antimicrobial Agents and Chemotherapy 1988, 32: 1251–1256.

    PubMed  Google Scholar 

  68. Sedlock DM, Dobson RA, Deuel DM, Lesher GY, Rake JB In vitro and in vivo activities of a new quinolone, WIN 57273, possessing potent activity against gram-positive bacteria. Antimicrobial Agents and Chemotherapy 1990, 34: 568–575.

    PubMed  Google Scholar 

  69. Kojima T, Inoue M, Mitsuhashi S In vitro activity of AT-4140 against clinical bacterial isolates. Antimicrobial Agents and Chemotherapy 1989, 33: 1980–1988.

    PubMed  Google Scholar 

  70. Garcia-Rodriguez JA, Garcia Sanchez JE, Munoz Bellido JL, Trujillano I In vitro activities of irloxacin and E-3846, two new quinolones. Antimicrobial Agents and Chemotherapy 1990, 34: 1262–1267.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, C.S., Morrissey, I. & Smith, J.T. The mode of action of quinolones: The paradox in activity of low and high concentrations and activity in the anaerobic environment. Eur. J. Clin. Microbiol. Infect. Dis. 10, 240–248 (1991). https://doi.org/10.1007/BF01966996

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01966996

Keywords

Navigation