Skip to main content

Papillary Cancer: Special Aspects in Children

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

Our current approach to evaluation and treatment of PTC in children and adolescents has been extrapolated from the treatment of PTC in adults. While the histology of the cancer is the same, the clinical behavior of PTC in children is very different and the potential short- and long-term risks of complications from treatment are expressed over a greater period of time. As the pediatric community continues to search for the safest and most effective treatment options for children, one must be cognizant that our current knowledge and approach to care is based on retrospective chart reviews. These reviews often cover decades of time with great variations in age of patient, degree of iodine sufficiency, and details of surgical as well as medical evaluation and management. While the last decade has witnessed a marked increase in the number of reports on pediatric thyroid cancer, information on 30–40-year posttreatment follow-up remains quite limited. These disparities and unknowns continue to create controversy in treatment as we strive to balance and individualize the use of aggressive surgical and medical treatment for a cancer that on presentation appears aggressive, with an increased frequency of regional and pulmonary metastasis, but, in contrast to adults, appears to have a more indolent, long-term natural history and lower incidence of disease-specific mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hogan AR, et al. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res. 2009;156(1):167–72.

    Article  PubMed  Google Scholar 

  2. Wu X, et al. Cancer incidence patterns among adolescents and young adults in the United States. Cancer Causes Control. 2005;16(3):309–20.

    Article  PubMed  Google Scholar 

  3. Giuffrida D, et al. Differentiated thyroid cancer in children and adolescents. J Endocrinol Invest. 2002;25(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar A, Bal CS. Differentiated thyroid cancer. Indian J Pediatr. 2003;70(9):707–13.

    Article  PubMed  Google Scholar 

  5. Lee YM, et al. Well-differentiated thyroid carcinoma in Hong Kong Chinese patients under 21 years of age: a 35-year experience. J Am Coll Surg. 2002;194(6):711–6.

    Article  PubMed  Google Scholar 

  6. Bargren AE, et al. Outcomes of surgically managed pediatric thyroid cancer. J Surg Res. 2009;156(1):70–3.

    Article  PubMed  Google Scholar 

  7. Demidchik YE, et al. Comprehensive clinical assessment of 740 cases of surgically treated thyroid cancer in children of Belarus. Ann Surg. 2006;243(4):525–32.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frankenthaler RA, et al. Lymph node metastasis from papillary-follicular thyroid carcinoma in young patients. Am J Surg. 1990;160(4):341–3.

    Article  CAS  PubMed  Google Scholar 

  9. Harness JK, et al. Differentiated thyroid carcinoma in children and adolescents. World J Surg. 1992;16(4):547–53; discussion 553–4.

    Article  CAS  PubMed  Google Scholar 

  10. Schlumberger M, et al. Differentiated thyroid carcinoma in childhood: long term follow-up of 72 patients. J Clin Endocrinol Metab. 1987;65(6):1088–94.

    Article  CAS  PubMed  Google Scholar 

  11. Zimmerman D, et al. Papillary thyroid carcinoma in children and adults: long-term follow-up of 1039 patients conservatively treated at one institution during three decades. Surgery. 1988;104(6):1157–66.

    CAS  PubMed  Google Scholar 

  12. Chow SM, et al. Differentiated thyroid carcinoma in childhood and adolescence-clinical course and role of radioiodine. Pediatr Blood Cancer. 2004;42(2):176–83.

    Article  PubMed  Google Scholar 

  13. Jarzab B, Handkiewicz-Junak D. Differentiated thyroid cancer in children and adults: same or distinct disease? Hormones (Athens). 2007;6(3):200–9.

    Google Scholar 

  14. Bal CS, et al. Is chest x-ray or high-resolution computed tomography scan of the chest sufficient investigation to detect pulmonary metastasis in pediatric differentiated thyroid cancer? Thyroid. 2004;14(3):217–25.

    Article  CAS  PubMed  Google Scholar 

  15. Vassilopoulou-Sellin R, et al. Pulmonary metastases in children and young adults with differentiated thyroid cancer. Cancer. 1993;71(4):1348–52.

    Article  CAS  PubMed  Google Scholar 

  16. Brink JS, et al. Papillary thyroid cancer with pulmonary metastases in children: long-term prognosis. Surgery. 2000;128(6):881–6; discussion 886–7.

    Article  CAS  PubMed  Google Scholar 

  17. Jarzab B, et al. Multivariate analysis of prognostic factors for differentiated thyroid carcinoma in children. Eur J Nucl Med. 2000;27(7):833–41.

    Article  CAS  PubMed  Google Scholar 

  18. Landau D, et al. Thyroid cancer in children: the Royal Marsden Hospital experience. Eur J Cancer. 2000;36(2):214–20.

    Article  CAS  PubMed  Google Scholar 

  19. Powers PA, et al. Tumor size and extent of disease at diagnosis predict the response to initial therapy for papillary thyroid carcinoma in children and adolescents. J Pediatr Endocrinol Metab. 2003;16(5):693–702.

    Article  PubMed  Google Scholar 

  20. Welch Dinauer CA, et al. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults. Clin Endocrinol (Oxf). 1998;49(5):619–28.

    Article  CAS  Google Scholar 

  21. Hay ID, et al. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34(6):1192–202.

    Article  PubMed  Google Scholar 

  22. Vassilopoulou-Sellin R, et al. Differentiated thyroid cancer in children and adolescents: clinical outcome and mortality after long-term follow-up. Head Neck. 1998;20(6):549–55.

    Article  CAS  PubMed  Google Scholar 

  23. Cooper DS, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167–214.

    Article  PubMed  Google Scholar 

  24. Waguespack SG, Francis G. Initial management and follow-up of differentiated thyroid cancer in children. J Natl Compr Cancer Netw. 2010;8(11):1289–300.

    Google Scholar 

  25. Rivkees SA, et al. The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr Rev. 2011;32:798–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Francis GL, Waguespack SG, Bauer AJ, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer: American Thyroid Association Guidelines Task Force. Thyroid. 2015;25(7):716–59.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ceccarelli C, et al. Thyroid cancer in children and adolescents. Surgery. 1988;104(6):1143–8.

    CAS  PubMed  Google Scholar 

  28. Jocham A, et al. Thyroid carcinoma in childhood: management and follow up of 11 cases. Eur J Pediatr. 1994;153(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  29. Samuel AM, Sharma SM. Differentiated thyroid carcinomas in children and adolescents. Cancer. 1991;67(8):2186–90.

    Article  CAS  PubMed  Google Scholar 

  30. Viswanathan K, Gierlowski TC, Schneider AB. Childhood thyroid cancer. Characteristics and long-term outcome in children irradiated for benign conditions of the head and neck. Arch Pediatr Adolesc Med. 1994;148(3):260–5.

    Article  CAS  PubMed  Google Scholar 

  31. Avula S, et al. Incidental thyroid abnormalities identified on neck US for non-thyroid disorders. Pediatr Radiol. 2010;40(11):1774–80.

    Article  PubMed  Google Scholar 

  32. Corrias A, et al. Diagnostic features of thyroid nodules in pediatrics. Arch Pediatr Adolesc Med. 2010;164(8):714–9.

    Article  PubMed  Google Scholar 

  33. Corrias A, et al. Accuracy of fine needle aspiration biopsy of thyroid nodules in detecting malignancy in childhood: comparison with conventional clinical, laboratory, and imaging approaches. J Clin Endocrinol Metab. 2001;86(10):4644–8.

    Article  CAS  PubMed  Google Scholar 

  34. Croom 3rd RD, et al. Autonomously functioning thyroid nodules in childhood and adolescence. Surgery. 1987;102(6):1101–8.

    PubMed  Google Scholar 

  35. Hopwood NJ, et al. Functioning thyroid masses in childhood and adolescence. Clinical, surgical, and pathologic correlations. J Pediatr. 1976;89(5):710–8.

    Article  CAS  PubMed  Google Scholar 

  36. Smith M, et al. Carcinoma of the thyroid in patients with autonomous nodules. Am Surg. 1988;54(7):448–9.

    CAS  PubMed  Google Scholar 

  37. Frates MC, et al. Management of thyroid nodules detected at US: society of radiologists in ultrasound consensus conference statement. Ultrasound Q. 2006;22(4):231–8; discussion 239–40.

    Article  PubMed  Google Scholar 

  38. Fish SA, Langer JE, Mandel SJ. Sonographic imaging of thyroid nodules and cervical lymph nodes. Endocrinol Metab Clin N Am. 2008;37(2):401–17, ix.

    Article  Google Scholar 

  39. Arda IS, et al. Fine needle aspiration biopsy of thyroid nodules. Arch Dis Child. 2001;85(4):313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Izquierdo R, et al. Ultrasound-guided fine-needle aspiration in the management of thyroid nodules in children and adolescents. Thyroid. 2009;19:703–5.

    Article  PubMed  Google Scholar 

  41. Cibas E. Bethesda and beyond. Cancer Cytopathol. 2010;118(4):184–5.

    Article  PubMed  Google Scholar 

  42. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19(11):1159–65.

    Article  PubMed  Google Scholar 

  43. Baloch ZW, et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol. 2008;36(6):425–37.

    Article  PubMed  Google Scholar 

  44. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol. 2009;132(5):658–65.

    Article  PubMed  Google Scholar 

  45. Bauer AJ, Francis GL. Update on the molecular signature of differentiated thyroid cancer: clinical implications and potential opportunities. Expert Rev Endocrinol Metab. 2011;6(6):819–34.

    Article  CAS  Google Scholar 

  46. Ballester LY, Sarabia SF, Sayeed H, et al. Integrating molecular testing in the diagnosis and management of children with thyroid lesions. Pediatr Dev Pathol. 2016;19(2):94–100.

    Article  PubMed  Google Scholar 

  47. Prasad ML, Vyas M, Horne MJ, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016;122(7):1097–107.

    Article  CAS  PubMed  Google Scholar 

  48. Pacini F, et al. Detection of thyroglobulin in fine needle aspirates of nonthyroidal neck masses: a clue to the diagnosis of metastatic differentiated thyroid cancer. J Clin Endocrinol Metab. 1992;74(6):1401–4.

    CAS  PubMed  Google Scholar 

  49. Baloch ZW, et al. Utility of thyroglobulin measurement in fine-needle aspiration biopsy specimens of lymph nodes in the diagnosis of recurrent thyroid carcinoma. Cytojournal. 2008;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hwang HS, Orloff LA. Efficacy of preoperative neck ultrasound in the detection of cervical lymph node metastasis from thyroid cancer. Laryngoscope. 2011;121(3):487–91.

    Article  PubMed  Google Scholar 

  51. Park JS, et al. Performance of preoperative sonographic staging of papillary thyroid carcinoma based on the sixth edition of the AJCC/UICC TNM classification system. AJR Am J Roentgenol. 2009;192(1):66–72.

    Article  PubMed  Google Scholar 

  52. Miyakoshi A, Dalley RW, Anzai Y. Magnetic resonance imaging of thyroid cancer. Top Magn Reson Imaging. 2007;18(4):293–302.

    Article  PubMed  Google Scholar 

  53. Fassina AS, et al. Thyroid cancer in children and adolescents. Tumori. 1994;80(4):257–62.

    CAS  PubMed  Google Scholar 

  54. Hemminki K, Eng C, Chen B. Familial risks for nonmedullary thyroid cancer. J Clin Endocrinol Metab. 2005;90(10):5747–53.

    Article  CAS  PubMed  Google Scholar 

  55. Nose V. Familial follicular cell tumors: classification and morphological characteristics. Endocr Pathol. 2010;21(4):219–26.

    Article  PubMed  Google Scholar 

  56. Prazeres H, et al. The familial counterparts of follicular cell – derived thyroid tumors. Int J Surg Pathol. 2010;18(4):233–42.

    Article  CAS  PubMed  Google Scholar 

  57. Sturgeon C, Clark OH. Familial nonmedullary thyroid cancer. Thyroid. 2005;15(6):588–93.

    Article  PubMed  Google Scholar 

  58. Zivaljevic V, et al. The incidence of familial nonmedullary thyroid cancer in a large case series. Acta Chir Belg. 2008;108(3):328–32.

    Article  CAS  PubMed  Google Scholar 

  59. Tan MH, Mester JL, Rybicki NJ, et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rutter MM, Jha P, Schultz KA, et al. DICER1 mutaitons and differentiated thyroid carcinoma: evidence of a direct association. J Clin Endocrinol Metab. 2016;101(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  61. Sandrini F, et al. Regulatory subunit type I-alpha of protein kinase A (PRKAR1A): a tumor-suppressor gene for sporadic thyroid cancer. Gene Chromosome Cancer. 2002;35(2):182–92.

    Article  CAS  Google Scholar 

  62. Brasseur B, et al. Multiple neoplasia in a 15-year-old girl with familial adenomatous polyposis. J Pediatr Hematol Oncol. 2009;31(7):530–2.

    Article  PubMed  Google Scholar 

  63. Cameselle-Teijeiro J, et al. Cribriform-morular variant of papillary thyroid carcinoma: molecular characterization of a case with neuroendocrine differentiation and aggressive behavior. Am J Clin Pathol. 2009;131(1):134–42.

    Article  CAS  PubMed  Google Scholar 

  64. Bhatti P, et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res. 2010;174(6):741–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cohen A, et al. Risk for secondary thyroid carcinoma after hematopoietic stem-cell transplantation: an EBMT Late Effects Working Party Study. J Clin Oncol. 2007;25(17):2449–54.

    Article  PubMed  Google Scholar 

  66. Laughton SJ, et al. Endocrine outcomes for children with embryonal brain tumors after risk-adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem-cell rescue on the SJMB-96 trial. J Clin Oncol. 2008;26(7):1112–8.

    Article  CAS  PubMed  Google Scholar 

  67. Sigurdson AJ, et al. Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case-control study. Lancet. 2005;365(9476):2014–23.

    Article  PubMed  Google Scholar 

  68. Sklar C, et al. Abnormalities of the thyroid in survivors of Hodgkin’s disease: data from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2000;85(9):3227–32.

    CAS  PubMed  Google Scholar 

  69. Ron E, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 1995;141(3):259–77.

    Article  CAS  PubMed  Google Scholar 

  70. Ronckers CM, et al. Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res. 2006;166(4):618–28.

    Article  CAS  PubMed  Google Scholar 

  71. Cardis E, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst. 2005;97(10):724–32.

    Article  PubMed  Google Scholar 

  72. Nesterenko AV, Nesterenko VB. 14. Protective measures for activities in Chernobyl’s radioactively contaminated territories. Ann N Y Acad Sci. 2009;1181:311–7.

    Article  CAS  PubMed  Google Scholar 

  73. Nesterenko AV, Nesterenko VB, Yablokov AV. Introduction: the difficult truth about Chernobyl. Ann N Y Acad Sci. 2009;1181:1–3.

    Article  PubMed  Google Scholar 

  74. Read Jr CH, Tansey MJ, Menda Y. A 36-year retrospective analysis of the efficacy and safety of radioactive iodine in treating young Graves’ patients. J Clin Endocrinol Metab. 2004;89(9):4229–33.

    Article  CAS  PubMed  Google Scholar 

  75. Kebebew E. Hereditary non-medullary thyroid cancer. World J Surg. 2008;32(5):678–82.

    Article  PubMed  Google Scholar 

  76. Yamashita S, Saenko V. Mechanisms of disease: molecular genetics of childhood thyroid cancers. Nat Clin Pract Endocrinol Metab. 2007;3(5):422–9.

    Article  CAS  PubMed  Google Scholar 

  77. Alsanea O, et al. Is familial non-medullary thyroid carcinoma more aggressive than sporadic thyroid cancer? A multicenter series. Surgery. 2000;128(6):1043–51.

    Article  CAS  PubMed  Google Scholar 

  78. Capezzone M, et al. Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr Relat Cancer. 2008;15(4):1075–81.

    Article  CAS  PubMed  Google Scholar 

  79. Musholt TJ, et al. Familial papillary thyroid carcinoma: genetics, criteria for diagnosis, clinical features, and surgical treatment. World J Surg. 2000;24(11):1409–17.

    Article  CAS  PubMed  Google Scholar 

  80. Takami H, Ozaki O, Ito K. Familial nonmedullary thyroid cancer: an emerging entity that warrants aggressive treatment. Arch Surg. 1996;131(6):676.

    Article  CAS  PubMed  Google Scholar 

  81. Lazar L, et al. Differentiated thyroid carcinoma in pediatric patients: comparison of presentation and course between pre-pubertal children and adolescents. J Pediatr. 2009;154(5):708–14.

    Article  PubMed  Google Scholar 

  82. Machens A, et al. Papillary thyroid cancer in children and adolescents does not differ in growth pattern and metastatic behavior. J Pediatr. 2010;157(4):648–52.

    Article  PubMed  Google Scholar 

  83. Naing S, Collins BJ, Schneider AB. Clinical behavior of radiation-induced thyroid cancer: factors related to recurrence. Thyroid. 2009;19(5):479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bal CS, Padhy AK, Kumar A. Clinical features of differentiated thyroid carcinoma in children and adolescents from a sub-Himalayan iodine-deficient endemic zone. Nucl Med Commun. 2001;22(8):881–7.

    Article  CAS  PubMed  Google Scholar 

  85. Harach HR, Williams ED. Childhood thyroid cancer in England and Wales. Br J Cancer. 1995;72(3):777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13(2):427–53.

    Article  CAS  PubMed  Google Scholar 

  87. Oertel YC, et al. Value of repeated fine needle aspirations of the thyroid: an analysis of over ten thousand FNAs. Thyroid. 2007;17(11):1061–6.

    Article  PubMed  Google Scholar 

  88. Yang J, et al. Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations. Cancer. 2007;111(5):306–15.

    Article  PubMed  Google Scholar 

  89. Sosa JA, et al. Clinical and economic outcomes of thyroid and parathyroid surgery in children. J Clin Endocrinol Metab. 2008;93(8):3058–65.

    Article  CAS  PubMed  Google Scholar 

  90. Thompson GB, Hay ID. Current strategies for surgical management and adjuvant treatment of childhood papillary thyroid carcinoma. World J Surg. 2004;28(12):1187–98.

    Article  PubMed  Google Scholar 

  91. Tuggle CT, et al. Pediatric endocrine surgery: who is operating on our children? Surgery. 2008;144(6):869–77; discussion 877.

    Article  PubMed  Google Scholar 

  92. Grigsby PW, et al. Childhood and adolescent thyroid carcinoma. Cancer. 2002;95(4):724–9.

    Article  PubMed  Google Scholar 

  93. Handkiewicz-Junak D, et al. Total thyroidectomy and adjuvant radioiodine treatment independently decrease locoregional recurrence risk in childhood and adolescent differentiated thyroid cancer. J Nucl Med. 2007;48(6):879–88.

    Article  CAS  PubMed  Google Scholar 

  94. Popovtzer A, et al. Thyroid cancer in children: management and outcome experience of a referral center. Otolaryngol Head Neck Surg. 2006;135(4):581–4.

    Article  PubMed  Google Scholar 

  95. Pacini F, et al. Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J Clin Endocrinol Metab. 2002;87(4):1499–501.

    Article  CAS  PubMed  Google Scholar 

  96. Spencer CA. Clinical Utility of Thyroglobulin Antibody (TgAb) measurements for patients with Differentiated Thyroid Cancers (DTC). J Clin Endocrinol Metab. 2011;96:3615–27.

    Article  CAS  PubMed  Google Scholar 

  97. Feinmesser R, et al. Carcinoma of the thyroid in children – a review. J Pediatr Endocrinol Metab. 1997;10(6):561–8.

    Article  CAS  PubMed  Google Scholar 

  98. Newman KD, et al. Differentiated thyroid cancer: determinants of disease progression in patients <21 years of age at diagnosis: a report from the Surgical Discipline Committee of the Children’s Cancer Group. Ann Surg. 1998;227(4):533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zimmermann MB, et al. New reference values for thyroid volume by ultrasound in iodine-sufficient schoolchildren: a World Health Organization/Nutrition for Health and Development Iodine Deficiency Study Group Report. Am J Clin Nutr. 2004;79(2):231–7.

    CAS  PubMed  Google Scholar 

  100. Musacchio MJ, et al. Greater local recurrence occurs with “berry picking” than neck dissection in thyroid cancer. Am Surg. 2003;69(3):191–6; discussion 196–7.

    PubMed  Google Scholar 

  101. Spoudeas HA, editor. Paediatric endocrine tumours. A multi-disciplinary consensus statement of best practice from a working group convened under the auspices of the British Society of Paediatric Endocrinology & Diabetes and the United Kingdom Children’s Cancer Study Group. West Sussex: Novo Nordisk Ltd; 2005.

    Google Scholar 

  102. Borson-Chazot F, et al. Predictive factors for recurrence from a series of 74 children and adolescents with differentiated thyroid cancer. World J Surg. 2004;28(11):1088–92.

    Article  PubMed  Google Scholar 

  103. Raval MV, et al. Utilization of total thyroidectomy for differentiated thyroid cancer in children. Ann Surg Oncol. 2010;17(10):2545–53.

    Article  PubMed  Google Scholar 

  104. Farahati J, et al. Characteristics of differentiated thyroid carcinoma in children and adolescents with respect to age, gender, and histology. Cancer. 1997;80(11):2156–62.

    Article  CAS  PubMed  Google Scholar 

  105. Massimino M, et al. Primary thyroid carcinoma in children: a retrospective study of 20 patients. Med Pediatr Oncol. 1995;24(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  106. Patwardhan N, Cataldo T, Braverman LE. Surgical management of the patient with papillary cancer. Surg Clin N Am. 1995;75(3):449–64.

    Article  CAS  PubMed  Google Scholar 

  107. Shindo ML. Considerations in surgery of the thyroid gland. Otolaryngol Clin N Am. 1996;29(4):629–35.

    CAS  Google Scholar 

  108. Stael AP, et al. Total thyroidectomy in the treatment of thyroid carcinoma in childhood. Br J Surg. 1995;82(8):1083–5.

    Article  CAS  PubMed  Google Scholar 

  109. Raval MV, et al. Total thyroidectomy for benign disease in the pediatric patient – feasible and safe. J Pediatr Surg. 2009;44(8):1529–33.

    Article  PubMed  Google Scholar 

  110. Savio R, et al. The role of a more extensive surgical approach in the initial multimodality management of papillary thyroid cancer in children. J Pediatr Surg. 2005;40(11):1696–700.

    Article  PubMed  Google Scholar 

  111. Barczynski M, et al. Applicability of intraoperative parathyroid hormone assay during total thyroidectomy as a guide for the surgeon to selective parathyroid tissue autotransplantation. World J Surg. 2008;32(5):822–8.

    Article  PubMed  Google Scholar 

  112. Skinner MA, et al. Heterotopic autotransplantation of parathyroid tissue in children undergoing total thyroidectomy. J Pediatr Surg. 1997;32(3):510–3.

    Article  CAS  PubMed  Google Scholar 

  113. Walsh SR, Kumar B, Coveney EC. Serum calcium slope predicts hypocalcaemia following thyroid surgery. Int J Surg. 2007;5(1):41–4.

    Article  PubMed  Google Scholar 

  114. Grodski S, et al. Postoperative PTH measurement facilitates day 1 discharge after total thyroidectomy. Clin Endocrinol (Oxf). 2009;70(2):322–5.

    Article  CAS  Google Scholar 

  115. Grodski S, Serpell J. Evidence for the role of perioperative PTH measurement after total thyroidectomy as a predictor of hypocalcemia. World J Surg. 2008;32(7):1367–73.

    Article  PubMed  Google Scholar 

  116. Sam AH, et al. Serum phosphate predicts temporary hypocalcaemia following thyroidectomy. Clin Endocrinol (Oxf). 2011;74(3):388–93.

    Article  CAS  Google Scholar 

  117. Angelos P. Recurrent laryngeal nerve monitoring: state of the art, ethical and legal issues. Surg Clin N Am. 2009;89(5):1157–69.

    Article  PubMed  Google Scholar 

  118. Grubbs EG, et al. Recent advances in thyroid cancer. Curr Probl Surg. 2008;45(3):156–250.

    Article  PubMed  Google Scholar 

  119. Lang BH, et al. Staging systems for papillary thyroid carcinoma: a study of 2 tertiary referral centers. Ann Surg. 2007;246(1):114–21.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Powers PA, et al. The MACIS score predicts the clinical course of papillary thyroid carcinoma in children and adolescents. J Pediatr Endocrinol Metab. 2004;17(3):339–43.

    Article  PubMed  Google Scholar 

  121. Shaha AR. TNM classification of thyroid carcinoma. World J Surg. 2007;31(5):879–87.

    Article  PubMed  Google Scholar 

  122. Koo JS, Hong S, Park CS. Diffuse sclerosing variant is a major subtype of papillary thyroid carcinoma in the young. Thyroid. 2009;19(11):1225–31.

    Article  PubMed  Google Scholar 

  123. Jarzab B, Handkiewicz-Junak D, Wloch J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 2005;12(4):773–803.

    Article  CAS  PubMed  Google Scholar 

  124. Kuijt WJ, Huang SA. Children with differentiated thyroid cancer achieve adequate hyperthyrotropinemia within 14 days of levothyroxine withdrawal. J Clin Endocrinol Metab. 2005;90(11):6123–5.

    Article  CAS  PubMed  Google Scholar 

  125. Faggiano A, et al. Age-dependent variation of follicular size and expression of iodine transporters in human thyroid tissue. J Nucl Med. 2004;45(2):232–7.

    CAS  PubMed  Google Scholar 

  126. Patel A, et al. Differentiated thyroid carcinoma that express sodium-iodide symporter have a lower risk of recurrence for children and adolescents. Pediatr Res. 2002;52(5):737–44.

    Article  CAS  PubMed  Google Scholar 

  127. Pacini F, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab. 2006;91(3):926–32.

    Article  CAS  PubMed  Google Scholar 

  128. Pilli T, et al. A comparison of 1850 (50 mCi) and 3700 MBq (100 mCi) 131-iodine administered doses for recombinant thyrotropin-stimulated postoperative thyroid remnant ablation in differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92(9):3542–6.

    Article  CAS  PubMed  Google Scholar 

  129. Tuttle RM, et al. Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl Med. 2008;49(5):764–70.

    Article  PubMed  Google Scholar 

  130. Elisei R, et al. Follow-up of low-risk differentiated thyroid cancer patients who underwent radioiodine ablation of postsurgical thyroid remnants after either recombinant human thyrotropin or thyroid hormone withdrawal. J Clin Endocrinol Metab. 2009;94(11):4171–9.

    Article  CAS  PubMed  Google Scholar 

  131. Iorcansky S, et al. Serum thyrotropin (TSH) levels after recombinant human TSH injections in children and teenagers with papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90(12):6553–5.

    Article  CAS  PubMed  Google Scholar 

  132. Luster M, et al. Recombinant thyrotropin use in children and adolescents with differentiated thyroid cancer: a multicenter retrospective study. J Clin Endocrinol Metab. 2009;94(10):3948–53.

    Article  CAS  PubMed  Google Scholar 

  133. Lau WF, et al. Management of paediatric thyroid carcinoma: recent experience with recombinant human thyroid stimulating hormone in preparation for radioiodine therapy. Intern Med J. 2006;36(9):564–70.

    Article  CAS  PubMed  Google Scholar 

  134. Rachmiel M, et al. Evidence-based review of treatment and follow up of pediatric patients with differentiated thyroid carcinoma. J Pediatr Endocrinol Metab. 2006;19(12):1377–93.

    Article  CAS  PubMed  Google Scholar 

  135. Van Nostrand D, Atkins F. Pediatric differentiated thyroid cancer: can the prescribed activity of I-131 be increased? J Clin Endocrinol Metab. 2011;96(8):2401–3.

    Article  PubMed  CAS  Google Scholar 

  136. Gelfand MJ, Lemen LC. PET/CT and SPECT/CT dosimetry in children: the challenge to the pediatric imager. Semin Nucl Med. 2007;37(5):391–8.

    Article  PubMed  Google Scholar 

  137. Wong KK, et al. Hybrid SPECT-CT and PET-CT imaging of differentiated thyroid carcinoma. Br J Radiol. 2009;82(982):860–76.

    Article  CAS  PubMed  Google Scholar 

  138. Rubino C, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89(9):1638–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sandeep TC, et al. Second primary cancers in thyroid cancer patients: a multinational record linkage study. J Clin Endocrinol Metab. 2006;91(5):1819–25.

    Article  CAS  PubMed  Google Scholar 

  140. Sawka AM, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19(5):451–7.

    Article  CAS  PubMed  Google Scholar 

  141. Brown AP, et al. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93(2):504–15.

    Article  CAS  PubMed  Google Scholar 

  142. Klubo-Gwiezdzinska J, et al. Salivary gland malignancy and radioiodine therapy for thyroid cancer. Thyroid. 2010;20(6):647–51.

    Article  CAS  PubMed  Google Scholar 

  143. Bhattacharyya N, Chien W. Risk of second primary malignancy after radioactive iodine treatment for differentiated thyroid carcinoma. Ann Otol Rhinol Laryngol. 2006;115(8):607–10.

    Article  PubMed  Google Scholar 

  144. Verkooijen RB, et al. The incidence of second primary tumors in thyroid cancer patients is increased, but not related to treatment of thyroid cancer. Eur J Endocrinol. 2006;155(6):801–6.

    Article  CAS  PubMed  Google Scholar 

  145. Pacini F, et al. Post-surgical use of radioiodine (131I) in patients with papillary and follicular thyroid cancer and the issue of remnant ablation: a consensus report. Eur J Endocrinol. 2005;153(5):651–9.

    Article  CAS  PubMed  Google Scholar 

  146. Kloos RT. Protecting thyroid cancer patients from untoward effects of radioactive iodine treatment. Thyroid. 2009;19(9):925–8.

    Article  PubMed  Google Scholar 

  147. Lee SL. Complications of radioactive iodine treatment of thyroid carcinoma. J Natl Compr Cancer Netw. 2010;8(11):1277–86; quiz 1287.

    Google Scholar 

  148. Nakada K, et al. Does lemon candy decrease salivary gland damage after radioiodine therapy for thyroid cancer? J Nucl Med. 2005;46(2):261–6.

    PubMed  Google Scholar 

  149. Grewal RK, et al. Salivary gland side effects commonly develop several weeks after initial radioactive iodine ablation. J Nucl Med. 2009;50(10):1605–10.

    Article  CAS  PubMed  Google Scholar 

  150. Rosario PW, et al. Testicular function after radioiodine therapy in patients with thyroid cancer. Thyroid. 2006;16(7):667–70.

    Article  CAS  PubMed  Google Scholar 

  151. Sawka AM, et al. A systematic review of the gonadal effects of therapeutic radioactive iodine in male thyroid cancer survivors. Clin Endocrinol (Oxf). 2008;68(4):610–7.

    Article  Google Scholar 

  152. Edmonds CJ, Smith T. The long-term hazards of the treatment of thyroid cancer with radioiodine. Br J Radiol. 1986;59(697):45–51.

    Article  CAS  PubMed  Google Scholar 

  153. Hyer S, et al. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol (Oxf). 2002;56(6):755–8.

    Article  CAS  Google Scholar 

  154. Wallace WH. Oncofertility and preservation of reproductive capacity in children and young adults. Cancer. 2011;117(10 Suppl):2301–10.

    Article  PubMed  Google Scholar 

  155. Pacini F, et al. Testicular function in patients with differentiated thyroid carcinoma treated with radioiodine. J Nucl Med. 1994;35(9):1418–22.

    CAS  PubMed  Google Scholar 

  156. Vini L, et al. Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J. 2002;78(916):92–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sawka AM, et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol (Oxf). 2008;69(3):479–90.

    Article  Google Scholar 

  158. Casara D, et al. Pregnancy after high therapeutic doses of iodine-131 in differentiated thyroid cancer: potential risks and recommendations. Eur J Nucl Med. 1993;20(3):192–4.

    Article  CAS  PubMed  Google Scholar 

  159. Van Nostrand D, Neutze J, Atkins F. Side effects of “rational dose” iodine-131 therapy for metastatic well-differentiated thyroid carcinoma. J Nucl Med. 1986;27(10):1519–27.

    PubMed  Google Scholar 

  160. Maxon 3rd HR, Smith HS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin N Am. 1990;19(3):685–718.

    Google Scholar 

  161. Hung W, Sarlis NJ. Current controversies in the management of pediatric patients with well-differentiated nonmedullary thyroid cancer: a review. Thyroid. 2002;12(8):683–702.

    Article  PubMed  Google Scholar 

  162. Radetti G, et al. Bone mineral density in children and adolescent females treated with high doses of L-thyroxine. Horm Res. 1993;39(3–4):127–31.

    Article  CAS  PubMed  Google Scholar 

  163. Solomon BL, Wartofsky L, Burman KD. Prevalence of fractures in postmenopausal women with thyroid disease. Thyroid. 1993;3(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  164. Biko J, et al. Favourable course of disease after incomplete remission on (131)I therapy in children with pulmonary metastases of papillary thyroid carcinoma: 10 years follow-up. Eur J Nucl Med Mol Imaging. 2010;38(4):651–5.

    Article  PubMed  Google Scholar 

  165. Pawelczak M, et al. Outcomes of children and adolescents with well-differentiated thyroid carcinoma and pulmonary metastases following (1)(3)(1)I treatment: a systematic review. Thyroid. 2010;20(10):1095–101.

    Article  CAS  PubMed  Google Scholar 

  166. Antonelli A, et al. Role of neck ultrasonography in the follow-up of children operated on for thyroid papillary cancer. Thyroid. 2003;13(5):479–84.

    Article  PubMed  Google Scholar 

  167. Frasoldati A, et al. Diagnosis of neck recurrences in patients with differentiated thyroid carcinoma. Cancer. 2003;97(1):90–6.

    Article  PubMed  Google Scholar 

  168. Kaplan SL, et al. The role of MR imaging in detecting nodal disease in thyroidectomy patients with rising thyroglobulin levels. AJNR Am J Neuroradiol. 2009;30(3):608–12.

    Article  CAS  PubMed  Google Scholar 

  169. Mihailovic J, et al. MRI versus (1)(3)(1)I whole-body scintigraphy for the detection of lymph node recurrences in differentiated thyroid carcinoma. AJR Am J Roentgenol. 2010;195(5):1197–203.

    Article  PubMed  Google Scholar 

  170. Spencer C, et al. Serum Basal thyroglobulin measured by a second-generation assay correlates with the recombinant human thyrotropin-stimulated thyroglobulin response in patients treated for differentiated thyroid cancer. Thyroid. 2010;20(6):587–95.

    Article  CAS  PubMed  Google Scholar 

  171. Malandrino P, et al. Risk-adapted management of differentiated thyroid cancer assessed by a sensitive measurement of basal serum thyroglobulin. J Clin Endocrinol Metab. 2011;96(6):1703–9.

    Article  CAS  PubMed  Google Scholar 

  172. Spencer CA, Lopresti JS. Measuring thyroglobulin and thyroglobulin autoantibody in patients with differentiated thyroid cancer. Nat Clin Pract Endocrinol Metab. 2008;4(4):223–33.

    Article  CAS  PubMed  Google Scholar 

  173. Carty SE, et al. Consensus statement on the terminology and classification of central neck dissection for thyroid cancer. Thyroid. 2009;19(11):1153–8.

    Article  PubMed  Google Scholar 

  174. Leboulleux S, et al. Follicular cell-derived thyroid cancer in children. Horm Res. 2005;63(3):145–51.

    Article  CAS  PubMed  Google Scholar 

  175. Dottorini ME. Differentiated thyroid carcinoma in childhood. Rays. 2000;25(2):245–55.

    CAS  PubMed  Google Scholar 

  176. Samuel AM, Rajashekharrao B, Shah DH. Pulmonary metastases in children and adolescents with well-differentiated thyroid cancer. J Nucl Med. 1998;39(9):1531–6.

    CAS  PubMed  Google Scholar 

  177. Corrias A, et al. Thyroid nodules and cancer in children and adolescents affected by autoimmune thyroiditis. Arch Pediatr Adolesc Med. 2008;162(6):526–31.

    Article  PubMed  Google Scholar 

  178. Spencer C, Petrovic I, Fatemi S. Current thyroglobulin autoantibody (TgAb) assays often fail to detect interfering TgAb that can result in the reporting of falsely low/undetectable serum Tg IMA values for patients with differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96(5):1283–91.

    Article  CAS  PubMed  Google Scholar 

  179. Chiovato L, et al. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 2003;139(5 Pt 1):346–51.

    Article  CAS  PubMed  Google Scholar 

  180. Xing M, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90(12):6373–9.

    Article  CAS  PubMed  Google Scholar 

  181. Castagna MG, et al. Delayed risk stratification, to include the response to initial treatment (surgery and radioiodine ablation), has better outcome predictivity in differentiated thyroid cancer patients. Eur J Endocrinol. 2011;165(3):441–6.

    Article  CAS  PubMed  Google Scholar 

  182. Tuttle RM, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010;20(12):1341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Bauer MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bauer, A.J., Mostoufi-Moab, S. (2016). Papillary Cancer: Special Aspects in Children. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_51

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics