Skip to main content

Mass Spectrometry in Clinical Laboratory: Applications in Biomolecular Analysis

  • Protocol
Clinical Applications of Mass Spectrometry in Biomolecular Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1378))

Abstract

Mass spectrometry (MS) is a technique that can identify analytes on the basis of mass-to-charge (m/z) ratio. Although this technique has been used in research and specialized clinical laboratories for decades, however, in recent years, MS has been increasingly used in routine clinical laboratories. MS, especially when coupled to gas chromatography or liquid chromatography, provides very specific and often sensitive analysis of many analytes. Other advantages of MS include simultaneous analysis of multiple analytes (>100) and generally without need for specialized reagents. Commonly measured analytes by MS include drugs, hormones, and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammett-Stabler CA, Garg U (2010) The evolution of mass spectrometry in the clinical laboratory. Methods Mol Biol 603:1–7

    Article  PubMed  Google Scholar 

  2. Strathmann FG, Hoofnagle AN (2011) Current and future applications of mass spectrometry to the clinical laboratory. Am J Clin Pathol 136:609–616

    Article  CAS  PubMed  Google Scholar 

  3. Pagotto U, Fanelli F, Pasquali R (2013) Insights into tandem mass spectrometry for the laboratory endocrinology. Rev Endocr Metab Disord 14:141

    Article  PubMed  Google Scholar 

  4. Vogeser M, Parhofer KG (2007) Liquid chromatography tandem-mass spectrometry (LC-MS/MS)--technique and applications in endocrinology. Exp Clin Endocrinol Diabetes 115:559–570

    Article  CAS  PubMed  Google Scholar 

  5. Soldin SJ, Soldin OP (2009) Steroid hormone analysis by tandem mass spectrometry. Clin Chem 55:1061–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Albrecht L, Styne D (2007) Laboratory testing of gonadal steroids in children. Pediatr Endocrinol Rev 5(Suppl 1):599–607

    PubMed  Google Scholar 

  7. Handelsman DJ, Wartofsky L (2013) Requirement for mass spectrometry sex steroid assays in the Journal of Clinical Endocrinology and Metabolism. J Clin Endocrinol Metab 98:3971–3973

    Article  CAS  PubMed  Google Scholar 

  8. Garg U, Dasouki M (2006) Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: clinical and laboratory aspects. Clin Biochem 39:315–332

    Article  CAS  PubMed  Google Scholar 

  9. Jones PM, Bennett MJ (2002) The changing face of newborn screening: diagnosis of inborn errors of metabolism by tandem mass spectrometry. Clin Chim Acta 324:121–128

    Article  CAS  PubMed  Google Scholar 

  10. Jimenez CR Verheul HM (2014) Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications. Am Soc Clin Oncol Educ Book e504–10

    Google Scholar 

  11. Li Y, Song X, Zhao X, Zou L, Xu G (2014) Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 966:147–153

    Article  CAS  PubMed  Google Scholar 

  12. Whiteaker JR (2010) The increasing role of mass spectrometry in quantitative clinical proteomics. Clin Chem 56:1373–1374

    Article  CAS  PubMed  Google Scholar 

  13. Ho YP, Reddy PM (2011) Advances in mass spectrometry for the identification of pathogens. Mass Spectrom Rev 30:1203–1224

    Article  CAS  PubMed  Google Scholar 

  14. Lagace-Wiens P (2015) Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS)-based identification of pathogens from positive blood culture bottles. Methods Mol Biol 1237:47–55

    Article  PubMed  Google Scholar 

  15. Luan J, Yuan J, Li X, Jin S, Yu L, Liao M, Zhang H, Xu C, He Q, Wen B et al (2009) Multiplex detection of 60 hepatitis B virus variants by maldi-tof mass spectrometry. Clin Chem 55:1503–1509

    Article  CAS  PubMed  Google Scholar 

  16. Kriegsmann J, Kriegsmann M, Casadonte R (2014) MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (Review). Int J Oncol 46:893–906

    PubMed  Google Scholar 

  17. Clarke W, Rhea JM, Molinaro R (2013) Challenges in implementing clinical liquid chromatography-tandem mass spectrometry methods--the light at the end of the tunnel. J Mass Spectrom 48:755–767

    Article  CAS  PubMed  Google Scholar 

  18. Roux A, Lison D, Junot C, Heilier JF (2011) Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: a review. Clin Biochem 44:119–135

    Article  CAS  PubMed  Google Scholar 

  19. Wu AH, French D (2013) Implementation of liquid chromatography/mass spectrometry into the clinical laboratory. Clin Chim Acta 420:4–10

    Article  CAS  PubMed  Google Scholar 

  20. Armbruster DA, Overcash DR, Reyes J (2014) Clinical chemistry laboratory automation in the 21st century - Amat Victoria curam (victory loves careful preparation). Clin Biochem Rev 35:143–153

    PubMed Central  PubMed  Google Scholar 

  21. Vogeser M, Kirchhoff F (2011) Progress in automation of LC-MS in laboratory medicine. Clin Biochem 44:4–13

    Article  CAS  PubMed  Google Scholar 

  22. Vogeser M, Seger C (2010) Pitfalls associated with the use of liquid chromatography-tandem mass spectrometry in the clinical laboratory. Clin Chem 56:1234–1244

    Article  CAS  PubMed  Google Scholar 

  23. Carvalho VM (2012) The coming of age of liquid chromatography coupled to tandem mass spectrometry in the endocrinology laboratory. J Chromatogr B Analyt Technol Biomed Life Sci 883–884:50–58

    Article  PubMed  Google Scholar 

  24. Himmelsbach M (2012) 10 years of MS instrumental developments--impact on LC-MS/MS in clinical chemistry. J Chromatogr B Analyt Technol Biomed Life Sci 883–884:3–17

    Article  PubMed  Google Scholar 

  25. CLSI (2014) Liquid chromatography-mass spectrometry methods; Approved guideline. Document C62-A, vol 62-A. CLSI, Wayne, PA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Garg Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Garg, U., Zhang, Y.V. (2016). Mass Spectrometry in Clinical Laboratory: Applications in Biomolecular Analysis. In: Garg, U. (eds) Clinical Applications of Mass Spectrometry in Biomolecular Analysis. Methods in Molecular Biology, vol 1378. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3182-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3182-8_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3181-1

  • Online ISBN: 978-1-4939-3182-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics