Skip to main content

Analysis of Three-Dimensional Structures of Exocyst Components

  • Protocol
Yeast Cytokinesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1369))

Abstract

The exocyst is an octameric protein complex implicated in tethering secretory vesicles to the plasma membrane during exocytosis. To provide a mechanistic understanding of how it functions, it is of critical importance to elucidate its three-dimensional structure. This chapter briefly describes the protocols used in our structure determination of Exo70p and Exo84p, two subunits of the exocyst from Saccharomyces cerevisiae. Folding and domain arrangements of both proteins are predicted using bioinformatics tools. Limited proteolysis is carried out to define the boundaries of folded structures, which guides the design of suitable constructs for protein crystallization. The solved structures of both proteins validate the strategy and suggest it might be also used for structural studies of other proteins alike.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benarroch EE (2012) Membrane trafficking and transport: overview and neurologic implications. Neurology 79(12):1288–1295

    Article  PubMed  Google Scholar 

  2. Cheung AY, de Vries SC (2008) Membrane trafficking: intracellular highways and country roads. Plant Physiol 147(4):1451–1453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Stow JL (2013) Nobel Prize discovery paves the way for immunological traffic. Nat Rev Immunol 13(12):839–841

    Article  CAS  PubMed  Google Scholar 

  4. Chia PZ, Gleeson PA (2014) Membrane tethering. F1000Prime Rep 6:74

    Article  PubMed Central  PubMed  Google Scholar 

  5. Brown FC, Pfeffer SR (2010) An update on transport vesicle tethering. Mol Membr Biol 27(8):457–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Whyte JR, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115(Pt 13):2627–2637

    CAS  PubMed  Google Scholar 

  7. Liu J, Guo W (2012) The exocyst complex in exocytosis and cell migration. Protoplasma 249(3):587–597

    Article  PubMed  Google Scholar 

  8. Heider MR, Munson M (2012) Exorcising the exocyst complex. Traffic 13(7):898–907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zarsky V et al (2013) Exocyst complexes multiple functions in plant cells secretory pathways. Curr Opin Plant Biol 16(6):726–733

    Article  CAS  PubMed  Google Scholar 

  10. Lipschutz JH, Mostov KE (2002) Exocytosis: the many masters of the exocyst. Curr Biol 12(6):R212–R214

    Article  CAS  PubMed  Google Scholar 

  11. Wang S et al (2004) The mammalian exocyst, a complex required for exocytosis, inhibits tubulin polymerization. J Biol Chem 279(34):35958–35966

    Article  CAS  PubMed  Google Scholar 

  12. Zuo X, Guo W, Lipschutz JH (2009) The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol Biol Cell 20(10):2522–2529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hsu SC et al (1998) Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20(6):1111–1122

    Article  CAS  PubMed  Google Scholar 

  14. Munson M, Novick P (2006) The exocyst defrocked, a framework of rods revealed. Nat Struct Mol Biol 13(7):577–581

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita M et al (2010) Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3. Nat Struct Mol Biol 17(2):180–186

    Article  CAS  PubMed  Google Scholar 

  16. Moore BA, Robinson HH, Xu Z (2007) The crystal structure of mouse Exo70 reveals unique features of the mammalian exocyst. J Mol Biol 371(2):410–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hamburger ZA et al (2006) Crystal structure of the S.cerevisiae exocyst component Exo70p. J Mol Biol 356(1):9–21

    Article  CAS  PubMed  Google Scholar 

  18. Wu S et al (2005) Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol 12(10):879–885

    Article  CAS  PubMed  Google Scholar 

  19. Fukai S et al (2003) Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. EMBO J 22(13):3267–3278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jin R et al (2005) Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J 24(12):2064–2074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sivaram MV et al (2006) The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat Struct Mol Biol 13(6):555–556

    Article  CAS  PubMed  Google Scholar 

  22. Dong G et al (2005) The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat Struct Mol Biol 12(12):1094–1100

    Article  CAS  PubMed  Google Scholar 

  23. Winn MD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67(Pt 4):235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dosztanyi Z et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    Article  CAS  PubMed  Google Scholar 

  25. Buchan DW et al (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41(Web Server issue):W349–W357

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The original crystallization and structure determination were carried out in the group of Karin M. Reinisch at the Yale School of Medicine. Proteolysis analysis was repeated using the same protocols to generate Figs. 4a and 5a. The experiments were carried out in our group at the Max F. Perutz Laboratories in the Medical University of Vienna under the support of grant P24383-B21 from the Austrian Science Fund (FWF) to GD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lesigang, J., Dong, G. (2016). Analysis of Three-Dimensional Structures of Exocyst Components. In: Sanchez-Diaz, A., Perez, P. (eds) Yeast Cytokinesis. Methods in Molecular Biology, vol 1369. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3145-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3145-3_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3144-6

  • Online ISBN: 978-1-4939-3145-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics