Skip to main content

Simplified Assays for Evaluation of Resistance to Alternaria brassicicola and Turnip Mosaic Virus

  • Protocol
Plant Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1363))

  • 3924 Accesses

Abstract

Studying the natural defense mechanisms developed by model plants such as Arabidopsis is an important approach towards the improvement of crop species. The availability of mutants as well as the relative easiness to silence any gene in Arabidopsis provides an invaluable source of genotypes that can be used to discover new elements involved in the defense response. Here we describe simple and reliable methods to evaluate susceptibility/resistance to the pathogenic fungus Alternaria brassicicola and the viral pathogen Turnip mosaic virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trusov Y, Jorda L, Molina A, Botella JR (2010) G proteins and plant innate immunity. In: Baluska F, Jones AM, Yalovsky S (eds) Integrated G protein signaling in plants. Springer, Heidelberg, Berlin, pp 221–250. doi:10.1007/978-3-642-03524-1_1

    Chapter  Google Scholar 

  2. Nowicki M, Nowakowska M, Niezgoda A, Kozik EU (2012) Alternaria black spot of crucifers: symptoms, importance of disease, and perspectives of resistance breeding. Veg Crop Res Bull 76:5–19. doi:10.2478/v10032-012-0001-6

    Google Scholar 

  3. Kohl J, van Tongeren CAM, Groenenboom-de Haas BH, van Hoof RA, Driessen R, van der Heijden L (2010) Epidemiology of dark leaf spot caused by Alternaria brassicicola and A. brassicae in organic seed production of cauliflower. Plant Pathol 59(2):358–367. doi:10.1111/j.1365-3059.2009.02216.x

    Article  Google Scholar 

  4. Narusaka Y, Shinya T, Narusaka M, Motoyama N, Shimada H, Murakami K, Shibuya N (2013) Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis. Plant Signal Behav 8(9). doi: 25345 [pii] 10.4161/psb.25345

  5. Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR (2006) Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 140(1):210–220. doi:10.1104/pp.105.069625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. doi:10.1146/annurev.phyto.43.040204.135923

    Article  CAS  PubMed  Google Scholar 

  7. Su’udi M, Kim MG, Park SR, Hwang DJ, Bae SC, Ahn IP (2011) Arabidopsis cell death in compatible and incompatible interactions with Alternaria brassicicola. Mol Cells 31(6):593–601. doi:10.1007/s10059-011-2203-z

    Article  PubMed Central  PubMed  Google Scholar 

  8. Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR (2009) Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J 58(1):69–81. doi:10.1111/j.1365-313X.2008.03755.x

    Article  CAS  PubMed  Google Scholar 

  9. van Wees SCM, Chang HS, Zhu T, Glazebrook J (2003) Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol 132(2):606–617. doi:10.1104/pp.103.022186

    Article  PubMed Central  PubMed  Google Scholar 

  10. Maruta N, Trusov Y, Brenyah E, Parekh U, Botella JR (2015) Membrane-localized extra-large G-proteins and Gβγ of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol. doi:10.1104/pp.114.255703

    PubMed Central  PubMed  Google Scholar 

  11. Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33(2):271–283. doi:10.1046/j.1365-313X.2003.01625.x

    Article  CAS  PubMed  Google Scholar 

  12. Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3(5):289–300. doi:10.1046/j.1364-3703.2002.00132.x

    Article  CAS  PubMed  Google Scholar 

  13. Fraser RSS (1992) The genetics of plant-virus interactions – implications for plant-breeding. Euphytica 63(1–2):175–185. doi:10.1007/bf00023922

    Article  Google Scholar 

  14. Rao GP, Kumar PL, Holguin-Peña RJ (2008). Characterization, diagnosis & management of plant viruses. Volume 3: vegetable and pulse crops. Studium Press LLC

    Google Scholar 

  15. Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32(6):927–934. doi:10.1046/j.1365-313X.2002.01481.x

    Article  CAS  PubMed  Google Scholar 

  16. Nicolas O, Laliberte JF (1992) The complete nucleotide-sequence of turnip mosaic potyvirus RNA. J Gen Virol 73:2785–2793. doi:10.1099/0022-1317-73-11-2785

    Article  CAS  PubMed  Google Scholar 

  17. Wittmann S, Chatel H, Fortin MG, Laliberte JF (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234(1):84–92. doi:10.1006/viro.1997.8634

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. Plant Cell 22(2):481–496. doi:10.1105/tpc.109.073056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose R. Botella Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Trusov, Y., Dietzgen, R.G., Maruta, N., Botella, J.R. (2016). Simplified Assays for Evaluation of Resistance to Alternaria brassicicola and Turnip Mosaic Virus. In: Botella, J., Botella, M. (eds) Plant Signal Transduction. Methods in Molecular Biology, vol 1363. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3115-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3115-6_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3114-9

  • Online ISBN: 978-1-4939-3115-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics