Skip to main content

Efficient Gene Suppression in Dorsal Root Ganglia and Spinal Cord Using Adeno-Associated Virus Vectors Encoding Short-Hairpin RNA

  • Protocol
SiRNA Delivery Methods

Abstract

RNA interference is a powerful tool used to induce loss-of-function phenotypes through post-transcriptional gene silencing. Small interfering RNA (siRNA) molecules have been used to target the central nervous system (CNS) and are expected to have clinical utility against refractory neurodegenerative diseases. However, siRNA is characterized by low transduction efficiency, insufficient inhibition of gene expression, and short duration of therapeutic effects, and is thus not ideal for treatment of neural tissues and diseases. To address these problems, viral delivery of short-hairpin RNA (shRNA) expression cassettes that support more efficient and long-lasting transduction into target tissues is expected to be a promising delivery tool. Various types of gene therapy vectors have been developed, such as adenovirus, adeno-associated virus (AAV), herpes simplex virus and lentivirus; however, AAV is particularly advantageous because of its relative lack of immunogenicity and lack of chromosomal integration. In human clinical trials, recombinant AAV vectors are relatively safe and well-tolerated. In particular, serotype 9 of AAV (AAV9) vectors show the highest tropism for neural tissue and can cross the blood–brain barrier, and we have shown that intrathecal delivery of AAV9 yields relatively high gene transduction into dorsal root ganglia or spinal cord. This chapter describes how to successfully use AAV vectors encoding shRNA in vivo, particularly for RNA interference in the central and peripheral nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson BL, McCray PB (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340

    Article  CAS  PubMed  Google Scholar 

  2. Takeshita F, Ochiya T (2006) Therapeutic potential of RNA interference against cancer. Cancer Sci 97:689–696

    Article  CAS  PubMed  Google Scholar 

  3. Mikami M, Yang J (2005) Short hairpin RNA-mediated selective knockdown of NaV1.8 tetrodotoxin-resistant voltage-gated sodium channel in dorsal root ganglion neurons. Anesthesiology 103:828–836

    Article  CAS  PubMed  Google Scholar 

  4. Li G, Li D, Xie Q, Shi Y, Jiang S, Jin Y (2008) RNA interfering connective tissue growth factor prevents rat hepatic stellate cell activation and extracellular matrix production. J Gene Med 10:1039–1047

    Article  CAS  PubMed  Google Scholar 

  5. Hirai T, Enomoto M, Machida A, Yamamoto M, Kuwahara H, Tajiri M et al (2012) Intrathecal shRNA-AAV9 inhibits target protein expression in the spinal cord and dorsal root ganglia of adult mice. Hum Gene Ther Methods 23:119–127

    Article  CAS  PubMed  Google Scholar 

  6. Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D et al (2007) A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2:2068–2078

    Article  CAS  PubMed  Google Scholar 

  7. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  PubMed  Google Scholar 

  8. Hirai T, Enomoto M, Kaburagi H, Sotome S, Yoshida-Tanaka K, Ukegawa M et al (2014) Intrathecal AAV serotype 9-mediated delivery of shRNA against TRPV1 attenuates thermal hyperalgesia in a mouse model of peripheral nerve injury. Mol Ther 22:409–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lawlor PA, Bland RJ, Mouravlev A, Young D, During MJ (2009) Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol Ther 17:1692–1702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Bourdenx M, Dutheil N, Bezard E, Dehay B (2014) Systemic gene delivery to the central nervous system using Adeno-associated virus. Front Mol Neurosci 7:50

    Article  PubMed Central  PubMed  Google Scholar 

  11. Storek B, Reinhardt M, Wang C, Janssen WG, Harder NM, Banck MS et al (2008) Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. Proc Natl Acad Sci U S A 105:1055–1060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Snyder BR, Gray SJ, Quach ET, Huang JW, Leung CH, Samulski RJ et al (2011) Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum Gene Ther 22:1129–1135

    Article  CAS  PubMed  Google Scholar 

  13. Allen DT, Kiernan JA (1994) Permeation of proteins from the blood into peripheral nerves and ganglia. Neuroscience 59:755–764

    Article  CAS  PubMed  Google Scholar 

  14. Jimenez-Andrade JM, Herrera MB, Ghilardi JR, Vardanyan M, Melemedjian OK, Mantyh PW (2008) Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: implications for chemical-induced peripheral sensory neuropathies. Mol Pain 4:10

    Article  PubMed Central  PubMed  Google Scholar 

  15. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  CAS  PubMed  Google Scholar 

  16. Rossi JJ (2008) Expression strategies for short hairpin RNA interference triggers. Hum Gene Ther 19:313–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Miyagishi M, Taira K (2004) RNAi expression vectors in mammalian cells. Methods Mol Biol 252:483–491

    CAS  PubMed  Google Scholar 

  18. Hermens WT, ter Brake O, Dijkhuizen PA, Sonnemans MA, Grimm D, Kleinschmidt JA et al (1999) Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system. Hum Gene Ther 10:1885–1891

    Article  CAS  PubMed  Google Scholar 

  19. Olmsted JB, Carlson K, Klebe R, Ruddle F, Rosenbaum J (1970) Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc Natl Acad Sci U S A 65:129–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  PubMed  Google Scholar 

  21. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  22. Hasuwa H, Kaseda K, Einarsdottir T, Okabe M (2002) Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 532:227–230

    Article  CAS  PubMed  Google Scholar 

  23. Bertrand JR, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C (2002) Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 296:1000–1004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Ministry of Health Labour and Welfare Sciences research grant, a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science, and grants from the Uehara Memorial Foundation and the General Insurance Association of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Enomoto M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Enomoto, M., Hirai, T., Kaburagi, H., Yokota, T. (2016). Efficient Gene Suppression in Dorsal Root Ganglia and Spinal Cord Using Adeno-Associated Virus Vectors Encoding Short-Hairpin RNA. In: Shum, K., Rossi, J. (eds) SiRNA Delivery Methods. Methods in Molecular Biology, vol 1364. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3112-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3112-5_22

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3111-8

  • Online ISBN: 978-1-4939-3112-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics