Skip to main content

Secondary Structure Determination of Peptides and Proteins After Immobilization

  • Protocol
Peptide Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1352))

Abstract

The presentation of immobilized peptides and other small biomolecules attached to surfaces can be greatly affected by the attachment chemistry and linking moieties, resulting in altered activity and specificity. For this reason, it is critical to understand how the various aspects of surface immobilization—underlying substrate properties, tether structure, and site of linkage—affect the secondary and quaternary structures of the immobilized species. Here, we present methods for attaching cysteine-containing peptides to quartz surfaces and determining the secondary structure of surface-immobilized peptides. We specifically show that, even when covalently immobilized, changes in peptide conformation can still occur, with measurement occurring in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The RCA cleaning technique was developed during the 1960s by Werner Kern at RCA Laboratories (hence, the moniker of this solution) and has become a gold standard method for removing surface impurities from silicon semiconductors and glass substrates.

References

  1. Gosalia DN, Salisbury CM, Maly DJ et al (2005) Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays. Proteomics 5:1292–1298

    Article  CAS  PubMed  Google Scholar 

  2. Thiele A, Zerweck J, Schutkoweki M (2009) Peptide arrays for enzyme profiling. Methods Mol Biol 570:19–65

    Article  CAS  PubMed  Google Scholar 

  3. Buus S, Rockberg J, Forsström B et al (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteomics 11:1790–1800

    Article  PubMed  PubMed Central  Google Scholar 

  4. Price JV, Tangsombatvisit S, Xu G et al (2012) On silico peptide microarrays for high-resolution mapping of antibody epitopes and diverse protein-protein interactions. Nat Med 18:1434–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carmona SJ, Sanrtor PA, Leguizamon MS et al (2012) Diagnostic peptide discovery: prioritization of pathogen diagnostic markers using multiple features. PLoS One 7, e50748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cooley G, Etheridge RD, Boehlke C et al (2008) High throughput selection of effective serodiagnostics for Trypanosoma cruzi infection. PLoS Negl Trop Dis 2, e316

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kulagina N, Taitt C, Anderson GP et al (2014) Affinity-based detection of biological targets. US Patent no. 8,945,856 B2 (issued 3 Feb 2015)

    Google Scholar 

  8. Kulagina NV, Lassman ME, Ligler FS et al (2005) Antimicrobial peptides for detection of bacteria in biosensor assays. Anal Chem 77:6504–6508

    Article  CAS  PubMed  Google Scholar 

  9. Taitt CR, North SH, Kulagina NV (2009) Antimicrobial peptide arrays for detection of inactivated biothreat agents. Methods Mol Biol 570:233–255

    Article  CAS  PubMed  Google Scholar 

  10. Han X, Liu Y, Wu F-G et al (2014) Different interfacial behaviors of peptides chemically immobilized on surfaces with different linker lengths and via different termini. J Phys Chem B 118:2904–2912

    Article  CAS  PubMed  Google Scholar 

  11. Han X, Uzarski JR, Mello CM et al (2013) Different interfacial behaviors of N- and C-terminus cysteine-modified cecropin P1 chemically immobilized onto polymer surface. Langmuir 29:11705–11712

    Article  CAS  PubMed  Google Scholar 

  12. Ngundi MM, Taitt CR, Ligler FS (2007) Crosslinkers modify affinity of immobilized carbohydrates for cholera toxin. Sens Lett 5:621–624

    Article  CAS  Google Scholar 

  13. North S, Lock E, Walton S et al (2014) Processing microtitre plates for covalent immobilization chemistries. US Patent no. 8,651,158 B2 (issued 18 Feb 2014)

    Google Scholar 

  14. North S, Wojciechowski J, Chu V et al (2012) Surface immobilization chemistry influences peptide-based detection of lipopolysaccharide and lipoteichoic acid. J Pept Sci 18:366–372

    Article  CAS  PubMed  Google Scholar 

  15. Shriver-Lake LC, North SH, Dean SN et al (2013) Antimicrobial peptides for detection and diagnostic assays. In: Piletsky SA, Whitcomb MJ (eds) Designing receptors for the next generation of biosensors. Springer, Heidelberg, pp 85–104

    Google Scholar 

  16. Greenfield NJ (2007) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  Google Scholar 

  17. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    Article  CAS  PubMed  Google Scholar 

  18. Nygren P, Lundqvist M, Broo K et al (2008) Fundamental design principles that guide induction of helix upon formation of stable peptide − nanoparticle complexes. Nano Lett 8:1844–1852

    Article  CAS  PubMed  Google Scholar 

  19. Read MJ, Burkett SL (2003) Asymmetric α-helicity loss within a peptide adsorbed onto charged colloidal substrates. J Colloid Interface Sci 261:255–263

    Article  CAS  PubMed  Google Scholar 

  20. Stevens MM, Flynnn NT, Wang C et al (2004) Coiled-coil peptide-based assembly of gold nanoparticles. Adv Mater 16:915–918

    Article  CAS  Google Scholar 

  21. Fears KP, Petrovykh DY, Photiadis SJ et al (2013) Circular dichroism analysis of cyclic β-helical peptides adsorbed on planar fused quartz. Langmuir 29.32 (2013): 10095–10101.

    Google Scholar 

  22. Gallardo IF, Webb LJ (2012) Demonstration of α-helical structure of peptides tethered to gold surfaces using surface infrared and circular dichroic spectroscopies. Langmuir 28:3510–3515

    Article  CAS  PubMed  Google Scholar 

  23. Sivaraman B, Fears KP, Latour RA (2009) Investigation of the effects of surface chemistry and solution concentration on the conformation of adsorbed proteins using an improved circular dichroism method. Langmuir 25:3050–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vermeer AWP, Norde W (2000) CD spectroscopy of proteins adsorbed at flat hydrophilic quartz and hydrophobic Teflon surfaces. J Colloid Interface Sci 225:394–397

    Article  CAS  PubMed  Google Scholar 

  25. Kulagina NV, Shaffer KM, Anderson GP et al (2006) Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Anal Chim Acta 575:9–15

    Article  CAS  PubMed  Google Scholar 

  26. Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6, e18692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lesaicherre M-L, Uttamchandani M, Chen GYJ et al (2002) Developing site-specific immobilization strategies of peptides in a microarray. Bioorg Med Chem Lett 12:2079–2083

    Article  CAS  PubMed  Google Scholar 

  28. Ngundi MM, Taitt CR, Ligler FS (2006) Simultaneous determination of kinetic parameters for the binding of cholera toxin to immobilized sialic acid and monoclonal antibody using an array biosensor. Biosens Bioelectron 22:124–130

    Article  CAS  PubMed  Google Scholar 

  29. Ngundi MM, Taitt CR, McMurry SA et al (2006) Detection of bacterial toxins with monosaccharide arrays. Biosens Bioelectron 21:1195–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silvestro L, Axelsen PH (2000) Membrane-induced folding of cecropin A. Biophys J 79:1465–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee E, Jeong K-W, Lee J et al (2013) Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. BMB Rep 46:282–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McPhie P (2001) Circular dichroism studies on proteins in films and in solution: estimation of secondary structure by g-factor analysis. Anal Biochem 293:109–119

    Article  CAS  PubMed  Google Scholar 

  33. Becktel WJ, Schellman JA (1987) Protein stability curves. Biopolymers 26:1859–1877

    Article  CAS  PubMed  Google Scholar 

  34. Blondelle SE, Ostresh JM, Houghten RA et al (1995) Induced conformational states of amphipathic peptides in aqueous/lipid environments. Biophys J 68:351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fears KP, Latour R (2009) Assessing the influence of adsorbed-state conformation on the bioactivity of adsorbed enzyme layers. Langmuir 25:13926–13933

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported through the Office of Naval Research and the Naval Research Laboratory Core research programs. The views expressed herein are those of the authors and do not represent those of the US Naval Research Laboratory, the US Navy, the US Department of Defense, or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris R. Taitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

North, S.H., Taitt, C.R. (2016). Secondary Structure Determination of Peptides and Proteins After Immobilization. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology, vol 1352. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3037-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3037-1_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3036-4

  • Online ISBN: 978-1-4939-3037-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics