Skip to main content

Peptide Arrays for Enzyme Profiling

  • Protocol
  • First Online:
Peptide Microarrays

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 570))

Abstract

Enzymes are key molecules in signal transduction pathways. However, only a small fraction of more than 500 predicted human kinases, 250 proteases and 250 phosphatases is characterized so far. Peptide microarray-based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. Additionally, patterns of enzymatic activities could be used to fingerprint the status of cells or organisms. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimization of enzyme substrates. A comprehensive overview regarding enzyme profiling using peptide microarrays is presented with special focus on assay principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fodor, S. P., J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu & D. Solas (1991) Light-directed, spatially addressable parallel chemical synthesis. Science, 251, 767–73.

    Article  PubMed  CAS  Google Scholar 

  2. Pellois, J. P., X. Zhou, O. Srivannavit, T. Zhou, E. Gulari & X. Gao (2002) Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol, 20, 922–6.

    Article  PubMed  CAS  Google Scholar 

  3. LeProust, E., J. P. Pellois, P. Yu, H. Zhang, X. Gao, O. Srivannavit, E. Gulari & X. Zhou (2000) Digital light-directed synthesis. A microarray platform that permits rapid reaction optimization on a combinatorial basis. J Comb Chem, 2, 349–54.

    Article  PubMed  CAS  Google Scholar 

  4. Komolpis, K., O. Srivannavit & E. Gulari (2002) Light-directed simultaneous synthesis of oligopeptides on microarray substrate using a photogenerated acid. Biotechnol Prog, 18, 641–6.

    Article  PubMed  CAS  Google Scholar 

  5. Frank, R., S. Güler, S. Krause & W. Lindenmaier (1991). Peptides 1990 proceedings of the 21st European peptide symposium (Eds. Giralt, E., Andreu, D.) Escom Leiden, 151–152.

    Google Scholar 

  6. Frank, R. (1992) Spot-synthesis: an easy technique for the positionally adressable, parallel chemical synthesis on a membrane support. Tetrahedron, 48, 9217–9232.

    Article  CAS  Google Scholar 

  7. Frank, R. (1995) Simultaneous and combinatorial chemical synthesis techniques for the generation and screening of molecular diversity. J Biotechnol, 41, 259–72.

    Article  PubMed  CAS  Google Scholar 

  8. Wenschuh, H., R. Volkmer-Engert, M. Schmidt, M. Schulz, J. Schneider-Mergener & U. Reineke (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers, 55, 188–206.

    Article  PubMed  CAS  Google Scholar 

  9. Kim, D. H., D. S. Shin & Y. S. Lee (2007) Spot arrays on modified glass surfaces for efficient SPOT synthesis and on-chip bioassay of peptides. J Pept Sci, 13, 625–33.

    Article  PubMed  CAS  Google Scholar 

  10. Frank, R. & H. Overwin (1996) SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol Biol, 66, 149–69.

    PubMed  CAS  Google Scholar 

  11. Kramer, A. & J. Schneider-Mergener (1998) Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol Biol, 87, 25–39.

    PubMed  CAS  Google Scholar 

  12. Kramer, A., U. Reineke, L. Dong, B. Hoffmann, U. Hoffmuller, D. Winkler, R. Volkmer-Engert & J. Schneider-Mergener (1999b) Spot synthesis: observations and optimizations. J Pept Res, 54, 319–27.

    Article  PubMed  CAS  Google Scholar 

  13. Reineke, U., A. Kramer & J. Schneider-Mergener (2001a) Epitope mapping with synthetic peptides prepared by SPOT synthesis. (Eds. Konterman, R., Dübel, S.) Antibody Engineering (Springer Lab Manual). Berlin: Springer Verlag, 443–459.

    Google Scholar 

  14. Reineke, U., R. Volkmer-Engert & J. Schneider-Mergener (2001c) Applications of peptide arrays prepared by the SPOT-technology. Curr Opin Biotechnol, 12, 59–64.

    Article  PubMed  CAS  Google Scholar 

  15. Reimer, U., U. Reineke & J. Schneider-Mergener (2002) Peptide arrays: from macro to micro. Curr Opin Biotechnol, 13, 315–20.

    Article  PubMed  CAS  Google Scholar 

  16. Frank, R. (2002b) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports – principles and applications. J Immunol Methods, 267, 13–26.

    Article  PubMed  CAS  Google Scholar 

  17. Frank, R. & J. Schneider-Mergener (2002) SPOT-Synthesis – Scope and Applications. Peptide Arrays on Membrane Supports: Synthesis and Application, Koch, J., Mahler, M., 1–22.

    Google Scholar 

  18. Frank, R. (2002a) High-density synthetic peptide microarrays: emerging tools for functional genomics and proteomics. Comb Chem High Throughput Screen, 5, 429–40.

    PubMed  CAS  Google Scholar 

  19. Reineke, U., J. Schneider-Mergener & M. Schutkowski (2004) Peptide arrays in proteomics and drug discovery. Micro/Nano technology for genomics and proteomics (Eds. Ozkan, M., Heller, M.) Volume 2,161–282.

    Google Scholar 

  20. Hilpert, K., D. F. Winkler & R. E. Hancock (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc, 2, 1333–49.

    Google Scholar 

  21. Beyer, M., T. Felgenhauer, F. Ralf Bischoff, F. Breitling & V. Stadler (2006) A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials, 27, 3505–14.

    Article  PubMed  CAS  Google Scholar 

  22. Beyer, M., A. Nesterov, I. Block, K. Konig, T. Felgenhauer, S. Fernandez, K. Leibe, G. Torralba, M. Hausmann, U. Trunk, V. Lindenstruth, F. R. Bischoff, V. Stadler & F. Breitling (2007) Combinatorial synthesis of peptide arrays onto a microchip. Science, 318, 1888.

    Article  PubMed  CAS  Google Scholar 

  23. Antohe, B. V. & P. W. Cooley (2007) In situ synthesis of peptide microarrays using ink-jet microdispensing. Methods Mol Biol, 381, 299–312.

    Article  PubMed  CAS  Google Scholar 

  24. Adler, G., R. Türk, N. Frank, W. Zander, W. Wu, J. Volkmer-Engert, J. Schneider-Mergener & H. Gausepohl (1999). Proceedings of the international symposium on innovation and perspectives in solid phase synthesis (Ed. Epton, R.) Mayflower Worldwide 221–222.

    Google Scholar 

  25. Falsey, J. R., M. Renil, S. Park, S. Li & K. S. Lam (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug Chem, 12, 346–53.

    Article  PubMed  CAS  Google Scholar 

  26. Lizcano, J. M., M. Deak, N. Morrice, A. Kieloch, C. J. Hastie, L. Dong, M. Schutkowski, U. Reimer & D. R. Alessi (2002) Molecular basis for the substrate specificity of NIMA-related kinase-6 (NEK6). Evidence that NEK6 does not phosphorylate the hydrophobic motif of ribosomal S6 protein kinase and serum- and glucocorticoid-induced protein kinase in vivo. J Biol Chem, 277, 27839–49.

    Article  PubMed  CAS  Google Scholar 

  27. Panse, S., L. Dong, A. Burian, R. Carus, M. Schutkowski, U. Reimer & J. Schneider-Mergener (2004) Profiling of generic anti-phosphopeptide antibodies and kinases with peptide microarrays using radioactive and fluorescence-based assays. Mol Divers, 8, 291–9.

    Article  PubMed  CAS  Google Scholar 

  28. Rychlewski, L., M. Kschischo, L. Dong, M. Schutkowski & U. Reimer (2004) Target specificity analysis of the Abl kinase using peptide microarray data. J Mol Biol, 336, 307–11.

    Article  PubMed  CAS  Google Scholar 

  29. Schutkowski, M., U. Reimer, S. Panse, L. Dong, J. M. Lizcano & D. R. Alessi (2004) High-content peptide microarrays for deciphering kinase specificity and biology. Angew Chem, 116, 2725–2728.

    Article  Google Scholar 

  30. Lesaicherre, M. L., M. Uttamchandani, G. Y. Chen & S. Q. Yao (2002) Developing site-specific immobilization strategies of peptides in a microarray. Bioorg Med Chem Lett, 12, 2079–83.

    Article  PubMed  CAS  Google Scholar 

  31. Inoue, Y., T. Mori, G. Yamanouchi, X. Han, T. Sonoda, T. Niidome & Y. Katayama (2008) Surface plasmon resonance imaging measurements of caspase reactions on peptide microarrays. Anal Biochem, 375, 147–9.

    Article  PubMed  CAS  Google Scholar 

  32. Inamori, K., M. Kyo, K. Matsukawa, Y. Inoue, T. Sonoda, K. Tatematsu, K. Tanizawa, T. Mori & Y. Katayama (2008) Optimal surface chemistry for peptide immobilization in on-chip phosphorylation analysis. Anal Chem, 80, 643–650.

    Article  PubMed  CAS  Google Scholar 

  33. Inamori, K., M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike & Y. Katayama (2005) Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule. Anal Chem, 77, 3979–85.

    Article  PubMed  CAS  Google Scholar 

  34. Shigaki, S., T. Yamaji, X. Han, G. Yamanouchi, T. Sonoda, O. Okitsu, T. Mori, T. Niidome & Y. Katayama (2007) A peptide microarray for the detection of protein kinase activity in cell lysate. Anal Sci, 23, 271–5.

    Article  PubMed  CAS  Google Scholar 

  35. Lemeer, S., C. Jopling, F. Naji, R. Ruijtenbeek, M. Slijper, A. J. Heck & J. den Hertog (2007) Protein–tyrosine kinase activity profiling in knock down zebrafish embryos. PLoS One, 2, e581.

    Article  PubMed  CAS  Google Scholar 

  36. Lemeer, S., R. Ruijtenbeek, M. W. Pinkse, C. Jopling, A. J. Heck, J. den Hertog & M. Slijper (2007) Endogenous phosphotyrosine signaling in zebrafish embryos. Mol Cell Proteomics, 6, 2088–99.

    Article  PubMed  CAS  Google Scholar 

  37. Mori, T., K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome & Y. Katayama (2007) Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging. Anal Biochem, 375, 223–31.

    Google Scholar 

  38. Han, A., T. Sonoda, J. H. Kang, M. Murata, N. I. T & Y. Katayam (2006) Development of a fluorescence peptide chip for the detection of caspase activity. Comb Chem High Throughput Screen, 9, 21–5.

    Google Scholar 

  39. Dawson, P. E., T. W. Muir, I. Clark-Lewis & S. B. Kent (1994) Synthesis of proteins by native chemical ligation. Science, 266, 776–9.

    Article  PubMed  CAS  Google Scholar 

  40. Lesaicherre, M. L., M. Uttamchandani, G. Y. Chen & S. Q. Yao (2002) Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg Med Chem Lett, 12, 2085–8.

    Article  PubMed  CAS  Google Scholar 

  41. Uttamchandani, M., E. W. Chan, G. Y. Chen & S. Q. Yao (2003) Combinatorial peptide microarrays for the rapid determination of kinase specificity. Bioorg Med Chem Lett, 13, 2997–3000.

    Article  PubMed  CAS  Google Scholar 

  42. Uttamchandani, M., G. Y. Chen, M. L. Lesaicherre & S. Q. Yao (2004) Site-specific peptide immobilization strategies for the rapid detection of kinase activity on microarrays. Methods Mol Biol, 264, 191–204.

    PubMed  CAS  Google Scholar 

  43. Houseman, B. T., J. H. Huh, S. J. Kron & M. Mrksich (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol, 20, 270–4.

    Article  PubMed  CAS  Google Scholar 

  44. Kohn, M., R. Wacker, C. Peters, H. Schroder, L. Soulere, R. Breinbauer, C. M. Niemeyer & H. Waldmann (2003) Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angew Chem Int Ed Engl, 42, 5830–4.

    Article  PubMed  CAS  Google Scholar 

  45. Kimura, N., T. Okegawa, K. Yamazaki & K. Matsuoka (2007) Site-specific, covalent attachment of poly(dT)-modified peptides to solid surfaces for microarrays. Bioconjug Chem, 18, 1778–85.

    Article  PubMed  CAS  Google Scholar 

  46. Parker, L. L., S. B. Brueggemeier, W. J. Rhee, D. Wu, S. B. Kent, S. J. Kron & S. P. Palecek (2006) Photocleavable peptide hydrogel arrays for MALDI-TOF analysis of kinase activity. Analyst, 131, 1097–104.

    Article  PubMed  CAS  Google Scholar 

  47. Lynch, M., C. Mosher, J. Huff, S. Nettikadan, J. Johnson & E. Henderson (2004) Functional protein nanoarrays for biomarker profiling. Proteomics, 4, 1695–702.

    Article  PubMed  CAS  Google Scholar 

  48. Wiley, J. P., K. A. Hughes, R. J. Kaiser, E. A. Kesicki, K. P. Lund & M. L. Stolowitz (2001) Phenylboronic acid–salicylhydroxamic acid bioconjugates. 2. Polyvalent immobilization of protein ligands for affinity chromatography. Bioconjug Chem, 12, 240–50.

    Article  PubMed  CAS  Google Scholar 

  49. Stolowitz, M. L., C. Ahlem, K. A. Hughes, R. J. Kaiser, E. A. Kesicki, G. Li, K. P. Lund, S. M. Torkelson & J. P. Wiley (2001) Phenylboronic acid–salicylhydroxamic acid bioconjugates. 1. A novel boronic acid complex for protein immobilization. Bioconjug Chem, 12, 229–39.

    Article  PubMed  CAS  Google Scholar 

  50. Melnyk, O., X. Duburcq, C. Olivier, F. Urbes, C. Auriault & H. Gras-Masse (2002) Peptide arrays for highly sensitive and specific antibody-binding fluorescence assays. Bioconjug Chem, 13, 713–20.

    Article  PubMed  CAS  Google Scholar 

  51. Olivier, C., A. Perzyna, Y. Coffinier, B. Grandidier, D. Stievenard, O. Melnyk & J. O. Durand (2006) Detecting the chemoselective ligation of peptides to silicon with the use of cobalt-carbonyl labels. Langmuir, 22, 7059–65.

    Article  PubMed  CAS  Google Scholar 

  52. Carion, O., V. Souplet, C. Olivier, C. Maillet, N. Medard, O. El-Mahdi, J. O. Durand & O. Melnyk (2007) Chemical micropatterning of polycarbonate for site-specific peptide immobilization and biomolecular interactions. Chembiochem, 8, 315–22.

    Article  PubMed  CAS  Google Scholar 

  53. Coffinier, Y., S. Szunerits, C. Jama, R. Desmet, O. Melnyk, B. Marcus, L. Gengembre, E. Payen, D. Delabouglise & R. Boukherroub (2007) Peptide immobilization on amine-terminated boron-doped diamond surfaces. Langmuir, 23, 4494–7.

    Article  PubMed  CAS  Google Scholar 

  54. Coffinier, Y., C. Olivier, A. Perzyna, B. Grandidier, X. Wallart, J. O. Durand, O. Melnyk & D. Stievenard (2005) Semicarbazide-functionalized Si(111) surfaces for the site-specific immobilization of peptides. Langmuir, 21, 1489–96.

    Article  PubMed  CAS  Google Scholar 

  55. Wegner, G. J., H. J. Lee & R. M. Corn (2002) Characterization and optimization of peptide arrays for the study of epitope–antibody interactions using surface plasmon resonance imaging. Anal Chem, 74, 5161–8.

    Article  PubMed  CAS  Google Scholar 

  56. Diaz-Mochon, J. J., L. Bialy & M. Bradley (2006) Dual colour, microarray-based, analysis of 10,000 protease substrates. Chem Commun (Camb), 3984–6.

    Google Scholar 

  57. Pouchain, D., J. J. Diaz-Mochon, L. Bialy & M. Bradley (2007) A 10,000 member PNA-encoded peptide library for profiling tyrosine kinases. ACS Chem Biol, 2, 810–8.

    Article  PubMed  CAS  Google Scholar 

  58. Luo, K., P. Zhou & H. F. Lodish (1995) The specificity of the transforming growth factor beta receptor kinases determined by a spatially addressable peptide library. Proc Natl Acad Sci USA, 92, 11761–5.

    Article  PubMed  CAS  Google Scholar 

  59. MacBeath, G. & S. L. Schreiber (2000) Printing proteins as microarrays for high-throughput function determination. Science, 289, 1760–3.

    PubMed  CAS  Google Scholar 

  60. Lee, S. J. & S. Y. Lee (2004) Microarrays of peptides elevated on the protein layer for efficient protein kinase assay. Anal Biochem, 330, 311–6.

    Article  PubMed  CAS  Google Scholar 

  61. Sun, H., C. H. Lu, M. Uttamchandani, Y. Xia, Y. C. Liou & S. Q. Yao (2008) Peptide Microarray for High-Throughput Determination of Phosphatase Specificity and Biology. Angew Chem Int Ed Engl, 47, 1698–1702.

    Article  PubMed  CAS  Google Scholar 

  62. Szallasi, Z., M. F. Denning, E. Y. Chang, J. Rivera, S. H. Yuspa, C. Lehel, Z. Olah, W. B. Anderson & P. M. Blumberg (1995) Development of a rapid approach to identification of tyrosine phosphorylation sites: application to PKC delta phosphorylated upon activation of the high affinity receptor for IgE in rat basophilic leukemia cells. Biochem Biophys Res Commun, 214, 888–94.

    Article  PubMed  CAS  Google Scholar 

  63. Edlund, M., K. Wikstrom, R. Toomik, P. Ek & B. Obrink (1998) Characterization of protein kinase C-mediated phosphorylation of the short cytoplasmic domain isoform of C-CAM. FEBS Lett, 425, 166–70.

    Article  PubMed  CAS  Google Scholar 

  64. Thiele, A., J. Zerweck, M. Weiwad, G. Fischer & M. Schutkowski (2009) High density peptide microarrays for reliable identification of phosphorylation sites and upstream kinases. Methods in molecular biology, Peptide Microarrays (Eds. Cretich, M. and Chiari, M).

    Google Scholar 

  65. Boeckmann, B., A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J. Martin, K. Michoud, C. O'Donovan, I. Phan, S. Pilbout & M. Schneider (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res, 31, 365–70.

    Article  PubMed  CAS  Google Scholar 

  66. Kreegipuu, A., N. Blom & S. Brunak (1999) PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res, 27, 237–9.

    Article  PubMed  CAS  Google Scholar 

  67. Toomik, R. & P. Ek (1997) A potent and highly selective peptide substrate for protein kinase C assay. Biochem J, 322 (Pt 2), 455–60.

    PubMed  CAS  Google Scholar 

  68. Stulemeijer, I. J., J. W. Stratmann & M. H. Joosten (2007) Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the Cf-4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiol, 144, 1481–94.

    Article  PubMed  CAS  Google Scholar 

  69. Ritsema, T., J. Joore, W. van Workum & C. M. Pieterse (2007) Kinome profiling of Arabidopsis using arrays of kinase consensus substrates. Plant Methods, 3, 3.

    Article  PubMed  CAS  Google Scholar 

  70. Hayashi, M., C. Fearns, B. Eliceiri, Y. Yang & J. D. Lee (2005) Big mitogen-activated protein kinase 1/extracellular signal-regulated kinase 5 signaling pathway is essential for tumor-associated angiogenesis. Cancer Res, 65, 7699–706.

    PubMed  CAS  Google Scholar 

  71. Mah, A. S., A. E. Elia, G. Devgan, J. Ptacek, M. Schutkowski, M. Snyder, M. B. Yaffe & R. J. Deshaies (2005) Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochem, 6, 22.

    Article  PubMed  CAS  Google Scholar 

  72. Diks, S. H., K. Parikh, M. van der Sijde, J. Joore, T. Ritsema & M. P. Peppelenbosch (2007) Evidence for a minimal eukaryotic phosphoproteome? PLoS One, 2, e777.

    Article  PubMed  CAS  Google Scholar 

  73. Diks, S. H., K. Kok, T. O'Toole, D. W. Hommes, P. van Dijken, J. Joore & M. P. Peppelenbosch (2004) Kinome profiling for studying lipopolysaccharide signal transduction in human peripheral blood mononuclear cells. J Biol Chem, 279, 49206–13.

    Article  PubMed  CAS  Google Scholar 

  74. van Baal, J. W., S. H. Diks, R. J. Wanders, A. M. Rygiel, F. Milano, J. Joore, J. J. Bergman, M. P. Peppelenbosch & K. K. Krishnadath (2006) Comparison of kinome profiles of Barrett's esophagus with normal squamous esophagus and normal gastric cardia. Cancer Res, 66, 11605–12.

    Article  PubMed  CAS  Google Scholar 

  75. Lowenberg, M., J. Tuynman, M. Scheffer, A. Verhaar, L. Vermeulen, S. van Deventer, D. Hommes & M. Peppelenbosch (2006) Kinome analysis reveals nongenomic glucocorticoid receptor-dependent inhibition of insulin signaling. Endocrinology, 147, 3555–62.

    Article  PubMed  CAS  Google Scholar 

  76. Lowenberg, M., J. Tuynman, J. Bilderbeek, T. Gaber, F. Buttgereit, S. van Deventer, M. Peppelenbosch & D. Hommes (2005) Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood, 106, 1703–10.

    Article  PubMed  CAS  Google Scholar 

  77. Zerweck, J., A. Masch & M. Schutkowski (2008) Peptide microarrays for profiling of modification state specific antibodies. Methods in molecular biology, epitope mapping protocols, 2nd edition (Eds. Reineke, R. and Schutkowski, M.) Chapter 12 Vol. 524, 169–80.

    Google Scholar 

  78. Espanel, X., S. Walchli, T. Ruckle, A. Harrenga, M. Huguenin-Reggiani & R. Hooft van Huijsduijnen (2003) Mapping of synergistic components of weakly interacting protein–protein motifs using arrays of paired peptides. J Biol Chem, 278, 15162–7.

    Article  PubMed  CAS  Google Scholar 

  79. Mukhija, S., L. Germeroth, J. Schneider-Mergener & B. Erni (1998) Identification of peptides inhibiting enzyme I of the bacterial phosphotransferase system using combinatorial cellulose-bound peptide libraries. Eur J Biochem, 254, 433–8.

    Article  PubMed  CAS  Google Scholar 

  80. Dostmann, W. R., C. Nickl, S. Thiel, I. Tsigelny, R. Frank & W. J. Tegge (1999) Delineation of selective cyclic GMP-dependent protein kinase Ialpha substrate and inhibitor peptides based on combinatorial peptide libraries on paper. Pharmacol Ther, 82, 373–87.

    Article  PubMed  CAS  Google Scholar 

  81. Dostmann, W. R., W. Tegge, R. Frank, C. K. Nickl, M. S. Taylor & J. E. Brayden (2002) Exploring the mechanisms of vascular smooth muscle tone with highly specific, membrane-permeable inhibitors of cyclic GMP-dependent protein kinase Ialpha. Pharmacol Ther, 93, 203–15.

    Article  PubMed  CAS  Google Scholar 

  82. Rodriguez, M., S. S. Li, J. W. Harper & Z. Songyang (2004) An oriented peptide array library (OPAL) strategy to study protein–protein interactions. J Biol Chem, 279, 8802–7.

    Article  PubMed  CAS  Google Scholar 

  83. Tegge, W., R. Frank, F. Hofmann & W. R. Dostmann (1995) Determination of cyclic nucleotide-dependent protein kinase substrate specificity by the use of peptide libraries on cellulose paper. Biochemistry, 34, 10569–77.

    Article  PubMed  CAS  Google Scholar 

  84. Dostmann, W. R., M. S. Taylor, C. K. Nickl, J. E. Brayden, R. Frank & W. J. Tegge (2000) Highly specific, membrane-permeant peptide blockers of cGMP-dependent protein kinase Ialpha inhibit NO-induced cerebral dilation. Proc Natl Acad Sci USA, 97, 14772–7.

    Article  PubMed  CAS  Google Scholar 

  85. Himpel, S., W. Tegge, R. Frank, S. Leder, H. G. Joost & W. Becker (2000) Specificity determinants of substrate recognition by the protein kinase DYRK1A. J Biol Chem, 275, 2431–8.

    Article  PubMed  CAS  Google Scholar 

  86. Loog, M., R. Toomik, K. Sak, G. Muszynska, J. Jarv & P. Ek (2000) Peptide phosphorylation by calcium-dependent protein kinase from maize seedlings. Eur J Biochem, 267, 337–43.

    Article  PubMed  CAS  Google Scholar 

  87. Rathert, P., A. Dhayalan, M. Murakami, X. Zhang, R. Tamas, R. Jurkowska, Y. Komatsu, Y. Shinkai, X. Cheng & A. Jeltsch (2008a) Protein lysine methyltransferase G9a acts on non-histone targets. Nat Chem Biol, 4, 344–6.

    Article  PubMed  CAS  Google Scholar 

  88. Rathert, P., X. Zhang, C. Freund, X. Cheng & A. Jeltsch (2008b) Analysis of the substrate specificity of the dim-5 histone lysine methyltransferase using Peptide arrays. Chem Biol, 15, 5–11.

    Article  PubMed  CAS  Google Scholar 

  89. Lu, P. J., X. Z. Zhou, M. Shen & K. P. Lu (1999) Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science, 283, 1325–8.

    Article  PubMed  CAS  Google Scholar 

  90. Wildemann, D., F. Erdmann, B. H. Alvarez, G. Stoller, X. Z. Zhou, J. Fanghanel, M. Schutkowski, K. P. Lu & G. Fischer (2006) Nanomolar inhibitors of the peptidyl prolyl cis/trans isomerase Pin1 from combinatorial peptide libraries. J Med Chem, 49, 2147–50.

    Article  PubMed  CAS  Google Scholar 

  91. Houseman, B. T. & M. Mrksich (1999) The Role of Ligand Density in the Enzymatic Glycosylation of Carbohydrates Presented on Self-Assembled Monolayers of Alkanethiolates on Gold. Angewandte Chemie Intl. Ed., 38, 782–5.

    Google Scholar 

  92. Fazio, F., M. C. Bryan, O. Blixt, J. C. Paulson & C. H. Wong (2002) Synthesis of sugar arrays in microtiter plate. J Am Chem Soc, 124, 14397–402.

    Article  PubMed  CAS  Google Scholar 

  93. von Olleschik-Elbheim, L., A. el Bayâ & M. A. Schmidt (1997). ADP-ribosylation inanimal tissue: Structure, Function and Biology of Mono(ADPriboryl)transferases and Related Enzymes. Plenum Press, New York 1997 (Ed. Haag, K.-N. and Koch-Nolte, F.), 87.

    Google Scholar 

  94. Zhu, Q., M. Uttamchandani, D. Li, M. L. Lesaicherre & S. Q. Yao (2003) Enzymatic profiling system in a small-molecule microarray. Org Lett, 5, 1257–60.

    Article  PubMed  CAS  Google Scholar 

  95. Zhu, H. & M. Snyder (2003) Protein chip technology. Curr Opin Chem Biol, 7, 55–63.

    Article  PubMed  CAS  Google Scholar 

  96. Schwamborn, K., P. Knipscheer, E. van Dijk, W. J. van Dijk, T. K. Sixma, R. H. Meloen & J. P. Langedijk (2008) SUMO assay with peptide arrays on solid support: insights into SUMO target sites. J Biochem, 144, 39–49.

    Article  PubMed  CAS  Google Scholar 

  97. Tegge, W. J. & R. Frank (1998) Analysis of protein kinase substrate specificity by the use of peptide libraries on cellulose paper (SPOT-method). Methods Mol Biol, 87, 99–106.

    PubMed  CAS  Google Scholar 

  98. Bodem, J. & M. Blüthner (2002) Modification of Immobilized Peptides. Peptide Arrays on Membrane Supports: Synthesis and Application, Koch, J., Mahler, M., 141–151.

    Google Scholar 

  99. Collins, M. O., L. Yu, M. P. Coba, H. Husi, I. Campuzano, W. P. Blackstock, J. S. Choudhary & S. G. Grant (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem, 280, 5972–82.

    Article  PubMed  CAS  Google Scholar 

  100. Martin, K., T. H. Steinberg, L. A. Cooley, K. R. Gee, J. M. Beechem & W. F. Patton (2003) Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics, 3, 1244–55.

    Article  PubMed  CAS  Google Scholar 

  101. Zhu, Q., A. Hong, N. Sheng, X. Zhang, A. Matejko, K. Y. Jun, O. Srivannavit, E. Gulari, X. Gao & X. Zhou (2007) microParaflo biochip for nucleic acid and protein analysis. Methods Mol Biol, 382, 287–312.

    Article  PubMed  CAS  Google Scholar 

  102. Rupcich, N., J. R. Green & J. D. Brennan (2005) Nanovolume kinase inhibition assay using a sol-gel-derived multicomponent microarray. Anal Chem, 77, 8013–9.

    Article  PubMed  CAS  Google Scholar 

  103. Shults, M. D., I. A. Kozlov, N. Nelson, B. G. Kermani, P. C. Melnyk, V. Shevchenko, A. Srinivasan, J. Musmacker, J. P. Hachmann, D. L. Barker, M. Lebl & C. Zhao (2007) A multiplexed protein kinase assay. Chembiochem, 8, 933–42.

    Article  PubMed  CAS  Google Scholar 

  104. Akita, S., N. Umezawa, N. Kato & T. Higuchi (2008) Array-based fluorescence assay for serine/threonine kinases using specific chemical reaction. Bioorg Med Chem, 16, 7788–94.

    Google Scholar 

  105. Elphick, L. M., S. E. Lee, V. Gouverneur & D. J. Mann (2007) Using chemical genetics and ATP analogues to dissect protein kinase function. ACS Chem Biol, 2, 299–314.

    Article  PubMed  CAS  Google Scholar 

  106. Allen, J. J., M. Li, C. S. Brinkworth, J. L. Paulson, D. Wang, A. Hubner, W. H. Chou, R. J. Davis, A. L. Burlingame, R. O. Messing, C. D. Katayama, S. M. Hedrick & K. M. Shokat (2007) A semisynthetic epitope for kinase substrates. Nat Methods, 4, 511–6.

    Article  PubMed  CAS  Google Scholar 

  107. Kerman, K. & H. B. Kraatz (2007) Electrochemical detection of kinase-catalyzed thiophosphorylation using gold nanoparticles. Chem Commun (Camb), 5019–21.

    Google Scholar 

  108. Song, H., K. Kerman & H. B. Kraatz (2008) Electrochemical detection of kinase-catalyzed phosphorylation using ferrocene-conjugated ATP. Chem Commun (Camb), 4, 502–4.

    Google Scholar 

  109. Sun, L., D. Liu & Z. Wang (2007) Microarray-based kinase inhibition assay by gold nanoparticle probes. Anal Chem, 79, 773–7.

    Article  PubMed  CAS  Google Scholar 

  110. Green, K. D. & M. K. Pflum (2007) Kinase-catalyzed biotinylation for phosphoprotein detection. J Am Chem Soc, 129, 10–1.

    Article  PubMed  CAS  Google Scholar 

  111. Wang, Z., J. Lee, A. R. Cossins & M. Brust (2005) Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Anal Chem, 77, 5770–4.

    Article  PubMed  CAS  Google Scholar 

  112. Min, D. H., J. Su & M. Mrksich (2004) Profiling kinase activities by using a peptide chip and mass spectrometry. Angew Chem Int Ed Engl, 43, 5973–7.

    Article  PubMed  CAS  Google Scholar 

  113. Su, J., M. R. Bringer, R. F. Ismagilov & M. Mrksich (2005) Combining microfluidic networks and peptide arrays for multi-enzyme assays. J Am Chem Soc, 127, 7280–1.

    Article  PubMed  CAS  Google Scholar 

  114. Kohn, M., M. Gutierrez-Rodriguez, P. Jonkheijm, S. Wetzel, R. Wacker, H. Schroeder, H. Prinz, C. M. Niemeyer, R. Breinbauer, S. E. Szedlacsek & H. Waldmann (2007) A microarray strategy for mapping the substrate specificity of protein tyrosine phosphatase. Angew Chem Int Ed Engl, 46, 7700–3.

    Article  PubMed  CAS  Google Scholar 

  115. Espanel, X. & R. H. van Huijsduijnen (2005) Applying the SPOT peptide synthesis procedure to the study of protein tyrosine phosphatase substrate specificity: probing for the heavenly match in vitro. Methods, 35, 64–72.

    Article  PubMed  CAS  Google Scholar 

  116. Espanel, X., M. Huguenin-Reggiani & R. Hooft van Huijsduijnen (2002) The SPOT technique as a tool for studying protein tyrosine phosphatase substrate specificities. Protein Sci, 11, 2326–34.

    Article  PubMed  CAS  Google Scholar 

  117. Pasquali, C., M. L. Curchod, S. Walchli, X. Espanel, M. Guerrier, F. Arigoni, G. Strous & R. H. Van Huijsduijnen (2003) Identification of protein tyrosine phosphatases with specificity for the ligand-activated growth hormone receptor. Mol Endocrinol, 17, 2228–39.

    Article  PubMed  CAS  Google Scholar 

  118. Duan, Y. & R. A. Laursen (1994) Protease substrate specificity mapping using membrane-bound peptides. Anal Biochem, 216, 431–8.

    Article  PubMed  CAS  Google Scholar 

  119. Naus, S., S. Reipschlager, D. Wildeboer, S. F. Lichtenthaler, S. Mitterreiter, Z. Guan, M. L. Moss & J. W. Bartsch (2006) Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8. Biol Chem, 387, 337–46.

    Article  PubMed  CAS  Google Scholar 

  120. Janssen, S., C. M. Jakobsen, D. M. Rosen, R. M. Ricklis, U. Reineke, S. B. Christensen, H. Lilja & S. R. Denmeade (2004) Screening a combinatorial peptide library to develop a human glandular kallikrein 2-activated prodrug as targeted therapy for prostate cancer. Mol Cancer Ther, 3, 1439–50.

    PubMed  CAS  Google Scholar 

  121. Reineke, U., D. Kurzhals, A. Köhler, C. Blex, J. E. G. McCarthy, P. Li, L. Germeroth & J. Schneider-Mergener (2001b) High throughput screening assay for the identification of protease substrates. Peptides 2000: Proceedings of the Twenty-Sixth European Peptide Symposium (Ed. Martinez, J., Fehrentz, J. A.) Éditions EDK 721.

    Google Scholar 

  122. Reineke, U. & U. HoffmĂĽller (2001). American Biotechnology Laboratory, 50.

    Google Scholar 

  123. Kaup, M., K. Dassler, U. Reineke, C. Weise, R. Tauber & H. Fuchs (2002) Processing of the human transferrin receptor at distinct positions within the stalk region by neutrophil elastase and cathepsin G. Biol Chem, 383, 1011–20.

    Article  PubMed  CAS  Google Scholar 

  124. Reineke, U., S. Bhargava, M. Schutkowski, C. Landgraf, L. Germeroth, G. Fischer & J. Schneider-Mergener (1999). Peptides 1998: Proceedings of the Twenty-Fifth European Peptide Symposium (Ed. Bajusz, S., Hudecz, F.), Akadèmiai Kiadò, Budapest, 1999, p. 670–671.

    Google Scholar 

  125. Dekker, N., R. C. Cox, R. A. Kramer & M. R. Egmond (2001) Substrate specificity of the integral membrane protease OmpT determined by spatially addressed peptide libraries. Biochemistry, 40, 1694–701.

    Article  PubMed  CAS  Google Scholar 

  126. Kramer, A., R. Affelt & J. Schneider-Mergener (1999a). Peptides 1998: Proceedings of the Twenty-Fifth European Peptide Symposium (Ed. Bajusz, S., Hudecz, F.) Akadèmiai Kiadò, Budapest, 546.

    Google Scholar 

  127. Kozlov, I. A., P. C. Melnyk, J. P. Hachmann, A. Srinivasan, M. Shults, C. Zhao, J. Musmacker, N. Nelson, D. L. Barker & M. Lebl (2008) A high-complexity, multiplexed solution-phase assay for profiling protease activity on microarrays. Comb Chem High Throughput Screen, 11, 24–35.

    Article  PubMed  CAS  Google Scholar 

  128. Salisbury, C. M., D. J. Maly & J. A. Ellman (2002) Peptide microarrays for the determination of protease substrate specificity. J Am Chem Soc, 124, 14868–70.

    Article  PubMed  CAS  Google Scholar 

  129. Kiyonaka, S., K. Sada, I. Yoshimura, S. Shinkai, N. Kato & I. Hamachi (2004) Semi-wet peptide/protein array using supramolecular hydrogel. Nat Mater, 3, 58–64.

    Article  PubMed  CAS  Google Scholar 

  130. Winssinger, N., S. Ficarro, P. G. Schultz & J. L. Harris (2002) Profiling protein function with small molecule microarrays. Proc Natl Acad Sci USA, 99, 11139–44.

    Article  PubMed  CAS  Google Scholar 

  131. Winssinger, N., J. L. Harris, B. J. Backes & P. G. Schultz (2001). From split-pool libraries to spatially addressable microarrays and its application to functional proteomic profiling. Angew Chem, 113, 3254–3258.

    Article  Google Scholar 

  132. Kozlov, I. A., P. C. Melnyk, J. P. Hachmann, D. L. Barker, M. Lebl & C. Zhao (2007) Evaluation of different chemical strategies for conjugation of oligonucleotides to peptides. Nucleos Nucleot Nucleic Acids, 26, 1353–7.

    Article  CAS  Google Scholar 

  133. Winssinger, N., R. Damoiseaux, D. C. Tully, B. H. Geierstanger, K. Burdick & J. L. Harris (2004) PNA-encoded protease substrate microarrays. Chem Biol, 11, 1351–60.

    Article  PubMed  CAS  Google Scholar 

  134. Pianowski, Z. L. & N. Winssinger (2008) Nucleic acid encoding to program self-assembly in chemical biology. Chem Soc Rev, 37, 1330–6.

    Article  PubMed  CAS  Google Scholar 

  135. Moilanen, A. M., U. Karvonen, H. Poukka, O. A. Janne & J. J. Palvimo (1998) Activation of androgen receptor function by a novel nuclear protein kinase. Mol Biol Cell, 9, 2527–43.

    PubMed  CAS  Google Scholar 

  136. Kemp, B. E., D. J. Graves, E. Benjamini & E. G. Krebs (1977) Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J Biol Chem, 252, 4888–94.

    PubMed  CAS  Google Scholar 

  137. Pinilla, C., J. R. Appel & R. A. Houghten (1993) Functional importance of amino acid residues making up peptide antigenic determinants. Mol Immunol, 30, 577–85.

    Article  PubMed  CAS  Google Scholar 

  138. Leung, G. C., C. S. Ho, I. M. Blasutig, J. M. Murphy & F. Sicheri (2007) Determination of the Plk4/Sak consensus phosphorylation motif using peptide spots arrays. FEBS Lett, 581, 77–83.

    Article  PubMed  CAS  Google Scholar 

  139. Vlad, F., B. E. Turk, P. Peynot, J. Leung & S. Merlot (2008) A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J, 55, 104–17.

    Article  PubMed  CAS  Google Scholar 

  140. Holt, L. J., J. E. Hutti, L. C. Cantley & D. O. Morgan (2007) Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol Cell, 25, 689–702.

    Article  PubMed  CAS  Google Scholar 

  141. Hutti, J. E., E. T. Jarrell, J. D. Chang, D. W. Abbott, P. Storz, A. Toker, L. C. Cantley & B. E. Turk (2004) A rapid method for determining protein kinase phosphorylation specificity. Nat Methods, 1, 27–9.

    Article  PubMed  CAS  Google Scholar 

  142. Zhu, H., J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed & M. Snyder (2000) Analysis of yeast protein kinases using protein chips. Nat Genet, 26, 283–9.

    Article  PubMed  CAS  Google Scholar 

  143. Kishimoto, A., K. Nishiyama, H. Nakanishi, Y. Uratsuji, H. Nomura, Y. Takeyama & Y. Nishizuka (1985) Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem, 260, 12492–9.

    PubMed  CAS  Google Scholar 

  144. Jones, C. H., P. Dexter, A. K. Evans, C. Liu, S. J. Hultgren & D. E. Hruby (2002) Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J Bacteriol, 184, 5762–71.

    Article  PubMed  CAS  Google Scholar 

  145. Frank, R., S. Hoffmann, M. Kiess, H. Lahmann, W. Tegge, C. Behn & H. Gausepohl (1996) Combinatoral peptide and nonpeptide libraries (Ed. Jung, G.). VCH Weinheim 363–386.

    Google Scholar 

  146. Toomik, R., M. Edlund, P. Ek, B. Obrink & L. Engstrom (1996) Simultaneously synthesized peptides on continuous cellulose membranes as substrates for protein kinases. Pept Res, 9, 6–11.

    PubMed  CAS  Google Scholar 

  147. Houseman, B. T. & M. Mrksich (2002) Towards quantitative assays with peptide chips: a surface engineering approach. Trends Biotechnol, 20, 279–81.

    Article  PubMed  CAS  Google Scholar 

  148. Buss, H., A. Dorrie, M. L. Schmitz, R. Frank, M. Livingstone, K. Resch & M. Kracht (2004) Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem, 279, 49571–4.

    Article  PubMed  CAS  Google Scholar 

  149. Li, Y., D. M. Keller, J. D. Scott & H. Lu (2005) CK2 phosphorylates SSRP1 and inhibits its DNA-binding activity. J Biol Chem, 280, 11869–75.

    Article  PubMed  CAS  Google Scholar 

  150. de la Fuente van Bentem, S., D. Anrather, I. Dohnal, E. Roitinger, E. Csaszar, J. Joore, J. Buijnink, A. Carreri, C. Forzani, Z. J. Lorkovic, A. Barta, D. Lecourieux, A. Verhounig, C. Jonak & H. Hirt (2008) Site-specific phosphorylation profiling of arabidopsis proteins by mass spectrometry and peptide chip analysis. J Proteome Res, 7, 2458–2470.

    Article  PubMed  CAS  Google Scholar 

  151. Wang, H. & D. L. Brautigan (2006) Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase. Mol Cell Proteomics, 5, 2124–30.

    Article  PubMed  CAS  Google Scholar 

  152. de Borst, M. H., S. H. Diks, J. Bolbrinker, M. W. Schellings, M. B. van Dalen, M. P. Peppelenbosch, R. Kreutz, Y. M. Pinto, G. Navis & H. van Goor (2007) Profiling of the renal kinome: a novel tool to identify protein kinases involved in angiotensin II-dependent hypertensive renal damage. Am J Physiol Renal Physiol, 293, F428–37.

    Article  CAS  Google Scholar 

  153. Horiuchi, K. Y., Y. Wang, S. L. Diamond & H. Ma (2006) Microarrays for the functional analysis of the chemical-kinase interactome. J Biomol Screen, 11, 48–56.

    Article  PubMed  CAS  Google Scholar 

  154. Wong, E. Y. & S. L. Diamond (2008) Enzyme microarrays assembled by acoustic dispensing technology. Anal Biochem, 81, 509–14.

    Google Scholar 

  155. Hilpert, K., G. Hansen, H. Wessner, J. Schneider-Mergener & W. Hohne (2000) Characterizing and optimizing protease/peptide inhibitor interactions, a new application for spot synthesis. J Biochem, 128, 1051–7.

    PubMed  CAS  Google Scholar 

  156. Laursen, R. A., C. Zhu & Y. Duan (2001). High-Throughput Organic Synthesis (Ed.Sucholeiki, I.), Marcel Dekker, New York, 113–9.

    Google Scholar 

  157. Gosalia, D. N., C. M. Salisbury, J. A. Ellman & S. L. Diamond (2005a) High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays. Mol Cell Proteomics, 4, 626–36.

    Article  PubMed  CAS  Google Scholar 

  158. Gosalia, D. N., C. M. Salisbury, D. J. Maly, J. A. Ellman & S. L. Diamond (2005b) Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays. Proteomics, 5, 1292–8.

    Article  PubMed  CAS  Google Scholar 

  159. Park, K., J. Ahn, S. Y. Yi, M. Kim & B. H. Chung (2008) SPR imaging-based monitoring of caspase-3 activation. Biochem Biophys Res Commun, 368, 684–9.

    Article  PubMed  CAS  Google Scholar 

  160. Gosalia, D. N., W. S. Denney, C. M. Salisbury, J. A. Ellman & S. L. Diamond (2006) Functional phenotyping of human plasma using a 361-fluorogenic substrate biosensing microarray. Biotechnol Bioeng, 94, 1099–110.

    Article  PubMed  CAS  Google Scholar 

  161. Gosalia, D. N. & S. L. Diamond (2003) Printing chemical libraries on microarrays for fluid phase nanoliter reactions. Proc Natl Acad Sci USA, 100, 8721–6.

    Article  PubMed  CAS  Google Scholar 

  162. Laurent, N., J. Voglmeir, A. Wright, J. Blackburn, N. T. Pham, S. C. Wong, S. J. Gaskell & S. L. Flitsch (2008) Enzymatic glycosylation of peptide arrays on gold surfaces. Chembiochem, 9, 883–7.

    Article  PubMed  CAS  Google Scholar 

  163. Patzelt, H., S. Rudiger, D. Brehmer, G. Kramer, S. Vorderwulbecke, E. Schaffitzel, A. Waitz, T. Hesterkamp, L. Dong, J. Schneider-Mergener, B. Bukau & E. Deuerling (2001) Binding specificity of Escherichia coli trigger factor. Proc Natl Acad Sci USA, 98, 14244–9.

    Article  PubMed  CAS  Google Scholar 

  164. Deuerling, E., H. Patzelt, S. Vorderwulbecke, T. Rauch, G. Kramer, E. Schaffitzel, A. Mogk, A. Schulze-Specking, H. Langen & B. Bukau (2003) Trigger Factor and DnaK possess overlapping substrate pools and binding specificities. Mol Microbiol, 47, 1317–28.

    Article  PubMed  CAS  Google Scholar 

  165. Su, J. & M. Mrksich (2002). Using Mass Spectrometry to Characterize Self-Assembled Monolayers Presenting Peptides, Proteins, and Carbohydrates. Angew Chem internatialn edition, 41, 4715–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thiele, A., Zerweck, J., Schutkowski, M. (2009). Peptide Arrays for Enzyme Profiling. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology™, vol 570. Humana Press. https://doi.org/10.1007/978-1-60327-394-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-394-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-393-0

  • Online ISBN: 978-1-60327-394-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics