Skip to main content

Use of Fluorescence Indicators in Receptor Ligands

  • Protocol
G Protein-Coupled Receptors in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1335))

Abstract

Fluorescence techniques can provide insights into the environment of fluorescence indicators incorporated within a ligand as it is bound to its receptor. Fluorescence indicators of different sizes and chemical characteristics can provide insights into the nature of the binding environment, the surrounding structures, and even into conformational changes associated with receptor activation. Methods for determining fluorescence spectral analysis, fluorescence quenching, fluorescence anisotropy, fluorescence lifetimes, and red edge excitation shifts of the ligand probes are described. The applications of these techniques to the CCK1 receptor occupied by alexa488-CCK and aladan-CCK, as examples of probes developed (1) by derivatization of an existing peptide and (2) by incorporation during peptide synthesis, are utilized as examples. These methods represent powerful tools to expand our understanding of the structure and molecular basis of ligand activation of G protein-coupled receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hulme EC (2013) GPCR activation: a mutagenic spotlight on crystal structures. Trends Pharmacol Sci 34:67–84

    Article  CAS  PubMed  Google Scholar 

  2. Siu FY, He M, de Graaf C et al (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449

    Article  CAS  PubMed  Google Scholar 

  3. Wu H, Wang C, Gregory KJ et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wang C, Wu H, Katritch V et al (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497:338–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    Article  CAS  PubMed  Google Scholar 

  6. Harikumar KG, Morfis MM, Lisenbee CS et al (2006) Constitutive formation of oligomeric complexes between family B G protein-coupled vasoactive intestinal polypeptide and secretin receptors. Mol Pharmacol 69:363–373

    CAS  PubMed  Google Scholar 

  7. Maurel D, Comps-Agrar L, Brock C et al (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Farrens DL, Altenbach C, Yang K et al (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770

    Article  CAS  PubMed  Google Scholar 

  9. Tsukamoto H, Farrens DL (2013) A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor. J Biol Chem 288:28207–28216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Baker JG, Middleton R, Adams L et al (2010) Influence of fluorophore and linker composition on the pharmacology of fluorescent adenosine A1 receptor ligands. Br J Pharmacol 159:772–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Granier S, Kim S, Shafer AM et al (2007) Structure and conformational changes in the C-terminal domain of the beta2-adrenoceptor: insights from fluorescence resonance energy transfer studies. J Biol Chem 282:13895–13905

    Article  CAS  PubMed  Google Scholar 

  12. Harikumar KG, Gao F, Pinon DI et al (2008) Use of multidimensional fluorescence resonance energy transfer to establish the orientation of cholecystokinin docked at the type A cholecystokinin receptor. Biochemistry 47:9574–9581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Harikumar KG, Lam PC, Dong M et al (2007) Fluorescence resonance energy transfer analysis of secretin docking to its receptor: mapping distances between residues distributed throughout the ligand pharmacophore and distinct receptor residues. J Biol Chem 282:32834–32843

    Article  CAS  PubMed  Google Scholar 

  14. Kuszak AJ, Pitchiaya S, Anand JP et al (2009) Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2. J Biol Chem 284:26732–26741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Daval SB, Kellenberger E, Bonnet D et al (2013) Exploration of the orthosteric/allosteric interface in human M1 muscarinic receptors by bitopic fluorescent ligands. Mol Pharmacol 84:71–85

    Article  CAS  PubMed  Google Scholar 

  16. Emami-Nemini A, Roux T, Leblay M et al (2013) Time-resolved fluorescence ligand binding for G protein-coupled receptors. Nat Protoc 8:1307–1320

    Article  PubMed  Google Scholar 

  17. Valant C, Maillet E, Bourguignon JJ et al (2009) Allosteric functional switch of neurokinin A-mediated signaling at the neurokinin NK2 receptor: structural exploration. J Med Chem 52:5999–6011

    Article  CAS  PubMed  Google Scholar 

  18. Harikumar KG, Pinon DI, Miller LJ (2006) Fluorescent indicators distributed throughout the pharmacophore of cholecystokinin provide insights into distinct modes of binding and activation of type A and B cholecystokinin receptors. J Biol Chem 281:27072–27080

    Article  CAS  PubMed  Google Scholar 

  19. Harikumar KG, Pinon DI, Wessels WS et al (2002) Environment and mobility of a series of fluorescent reporters at the amino terminus of structurally related peptide agonists and antagonists bound to the cholecystokinin receptor. J Biol Chem 277:18552–18560

    Article  CAS  PubMed  Google Scholar 

  20. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J et al (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188

    Article  CAS  PubMed  Google Scholar 

  21. Jones Brunette AM, Farrens DL (2014) Distance mapping in proteins using fluorescence spectroscopy: tyrosine, like tryptophan, quenches bimane fluorescence in a distance-dependent manner. Biochemistry 53:6290–6301

    Article  CAS  PubMed  Google Scholar 

  22. Sommer ME, Farrens DL, McDowell JH et al (2007) Dynamics of arrestin-rhodopsin interactions: loop movement is involved in arrestin activation and receptor binding. J Biol Chem 282:25560–25568

    Article  CAS  PubMed  Google Scholar 

  23. Johnson I (1998) Fluorescent probes for living cells. Histochem J 30:123–140

    Article  CAS  PubMed  Google Scholar 

  24. Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Chen RF (1968) Dansyl labeled proteins: determination of extinction coefficient and number of bound residues with radioactive dansyl chloride. Anal Biochem 25:412–416

    Article  CAS  PubMed  Google Scholar 

  26. Turcatti G, Zoffmann S, Lowe JA 3rd et al (1997) Characterization of non-peptide antagonist and peptide agonist binding sites of the NK1 receptor with fluorescent ligands. J Biol Chem 272:21167–21175

    Article  CAS  PubMed  Google Scholar 

  27. Prendergast FG, Meyer M, Carlson GL et al (1983) Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem 258:7541–7544

    CAS  PubMed  Google Scholar 

  28. Lakowicz JR (2006) Principles of fluorescescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  29. Yang Y, Zhang Q, Gao M et al (2014) A novel CXCR4-selective high-affinity fluorescent probe and its application in competitive binding assays. Biochemistry 53:4881–4883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Loison S, Cottet M, Orcel H et al (2012) Selective fluorescent nonpeptidic antagonists for vasopressin V(2) GPCR: application to ligand screening and oligomerization assays. J Med Chem 55:8588–8602

    Article  CAS  PubMed  Google Scholar 

  31. Harikumar KG, Cawston EE, Miller LJ (2011) Fluorescence polarization screening for allosteric small molecule ligands of the cholecystokinin receptor. Assay Drug Dev Technol 9:394–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hadac EM, Ghanekar DV, Holicky EL et al (1996) Relationship between native and recombinant cholecystokinin receptors: role of differential glycosylation. Pancreas 13:130–139

    Article  CAS  PubMed  Google Scholar 

  33. Powers SP, Pinon DI, Miller LJ (1988) Use of N, O-bis-Fmoc-D-Tyr-ONSu for introduction of an oxidative iodination site into cholecystokinin family peptides. Int J Pept Protein Res 31:429–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health, DK032878, and Mayo Clinic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence J. Miller M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Harikumar, K.G., Miller, L.J. (2015). Use of Fluorescence Indicators in Receptor Ligands. In: Filizola, M. (eds) G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, vol 1335. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2914-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2914-6_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2913-9

  • Online ISBN: 978-1-4939-2914-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics