Skip to main content

Application of Fluorescent Purinoceptor Antagonists for Bioluminescence Resonance Energy Transfer Assays and Fluorescent Microscopy

  • Protocol
  • First Online:
Purinergic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2041))

Abstract

Fluorescent antagonists offer the ability to interrogate G protein-coupled receptor pharmacology. With resonance energy transfer techniques, fluorescent antagonists can be implemented to monitor receptor–ligand interactions using assays originally designed for radiolabeled probes. The fluorescent nature of these antagonists also enables the localization and distribution of the receptors to be visualized in living cells. Here, we describe the generation of modified purinergic receptors with the NanoLuc luciferase or SNAP-tag, using the P1 adenosine A3 receptor as an example. We also describe the procedure of characterizing a novel fluorescent purinergic antagonist using ligand-mediated bioluminescence resonance energy transfer assays and confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbracchio MP, Burnstock G, Boeynaems J-M, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology. LVIII: Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  CAS  Google Scholar 

  2. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63:641–683

    Article  CAS  Google Scholar 

  3. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors, an update. Pharmacol Rev 63:1–34

    Article  CAS  Google Scholar 

  4. Burnstock G (2017) Purinergic signalling: therapeutic developments. Front Pharmacol 8:661

    Article  Google Scholar 

  5. Sarafoff N, Byrne RA, Sibbing D (2012) Clinical use of clopidogrel. Curr Pharm Des 18:5224–5239

    Article  CAS  Google Scholar 

  6. Lau OC, Samarawickrama C, Skalicky SE (2014) P2Y2 receptor agonists for the treatment of dry eye disease: a review. Clin Ophthalmol 8:327–334

    PubMed  PubMed Central  Google Scholar 

  7. Garland SL (2013) Are GPCRs still a source of new targets? J Biomol Screen 18:947–966

    Article  CAS  Google Scholar 

  8. Stoddart LA, Kilpatrick LE, Briddon SJ, Hill SJ (2015) Probing the pharmacology of G protein-coupled receptors with fluorescent ligands. Neuropharmacology 98:48–57

    Article  CAS  Google Scholar 

  9. Stoddart LA, Vernall AJ, Denman JL, Briddon SJ, Kellam B, Hill SJ (2012) Fragment screening at adenosine-A(3) receptors in living cells using a fluorescence-based binding assay. Chem Biol 19:1105–1115

    Article  CAS  Google Scholar 

  10. Arruda MA, Stoddart LA, Gherbi K, Briddon SJ, Kellam B, Hill SJ (2017) A non-imaging high throughput approach to chemical library screening at the unmodified adenosine-A3 receptor in living cells. Front Pharmacol 8:908

    Article  Google Scholar 

  11. Vernall AJ, Stoddart LA, Briddon SJ, Ng HW, Laughton CA, Doughty SW, Hill SJ, Kellam B (2013) Conversion of a non-selective adenosine receptor antagonist into A3-selective high affinity fluorescent probes using peptide-based linkers. Org Biomol Chem 11:5673–5682

    Article  CAS  Google Scholar 

  12. Stoddart LA, White CW, Nguyen K, Hill SJ, Pfleger KD (2016) Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br J Pharmacol 173:3028–3037

    Article  CAS  Google Scholar 

  13. Stoddart LA, Johnstone EK, Wheal AJ, Goulding J, Robers MB, Machleidt T, Wood KV, Hill SJ, Pfleger KD (2015) Application of BRET to monitor ligand binding to GPCRs. Nat Methods 12:661–663

    Article  CAS  Google Scholar 

  14. Stoddart LA, Kilpatrick LE, Hill SJ (2018) NanoBRET approaches to study ligand binding to GPCRs and RTKs. Trends Pharmacol Sci 39:136–147

    Article  CAS  Google Scholar 

  15. Soave M, Stoddart LA, Brown A, Woolard J, Hill SJ (2016) Use of a new proximity assay (NanoBRET) to investigate the ligand-binding characteristics of three fluorescent ligands to the human beta1-adrenoceptor expressed in HEK-293 cells. Pharmacol Res 4:e00250

    Google Scholar 

  16. Christiansen E, Hudson BD, Hansen AH, Milligan G, Ulven T (2016) Development and characterization of a potent free fatty acid receptor 1 (FFA1) fluorescent tracer. J Med Chem 59:4849–4858

    Article  CAS  Google Scholar 

  17. Rose RH, Briddon SJ, Hill SJ (2012) A novel fluorescent histamine H(1) receptor antagonist demonstrates the advantage of using fluorescence correlation spectroscopy to study the binding of lipophilic ligands. Br J Pharmacol 165:1789–1800

    Article  CAS  Google Scholar 

  18. Stoddart LA, Vernall AJ, Bouzo-Lorenzo M, Bosma R, Kooistra AJ, de Graaf C, Vischer HF, Leurs R, Briddon SJ, Kellam B, Hill SJ (2018) Development of novel fluorescent histamine H1-receptor antagonists to study ligand-binding kinetics in living cells. Sci Rep 8:1572

    Article  Google Scholar 

  19. Conroy S, Kindon ND, Glenn J, Stoddart LA, Lewis RJ, Hill SJ, Kellam B, Stocks MJ (2018) Synthesis and evaluation of the first fluorescent antagonists of the human P2Y2 receptor based on AR-C118925. J Med Chem 61:3089–3113

    Article  CAS  Google Scholar 

  20. Vernall AJ, Stoddart LA, Briddon SJ, Hill SJ, Kellam B (2012) Highly potent and selective fluorescent antagonists of the human adenosine A3 receptor based on the 1,2,4-triazolo(4,3-a)quinoxalin-1-one scaffold. J Med Chem 55:1771–1782

    Article  CAS  Google Scholar 

  21. Dong C, Filipeanu CM, Duvernay MT, Wu G (2007) Regulation of G protein-coupled receptor export trafficking. Biochim Biophys Acta 1768:853–870

    Article  CAS  Google Scholar 

  22. Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A 101:9955–9959

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh A. Stoddart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soave, M., Goulding, J., Markus, R., Hill, S.J., Stoddart, L.A. (2020). Application of Fluorescent Purinoceptor Antagonists for Bioluminescence Resonance Energy Transfer Assays and Fluorescent Microscopy. In: Pelegrín, P. (eds) Purinergic Signaling. Methods in Molecular Biology, vol 2041. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9717-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9717-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9716-9

  • Online ISBN: 978-1-4939-9717-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics