Skip to main content

Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms

  • Protocol
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1334))

Abstract

Riboswitches are highly structured RNA molecules that control genetic expression by altering their structure as a function of metabolite binding. Accumulating evidence suggests that riboswitch structures are highly dynamic and perform conformational exchange between structural states that are important for the outcome of genetic regulation. To understand how ligand binding influences the folding of riboswitches, it is important to monitor in real time the riboswitch folding pathway as a function of experimental conditions. Single-molecule FRET (sm-FRET) is unique among biophysical techniques to study riboswitch conformational changes as it allows to both monitor steady-state populations of riboswitch conformers and associated interconversion dynamics. Since FRET fluorophores can be attached to virtually any nucleotide position, FRET assays can be adapted to monitor specific conformational changes, thus enabling to deduce complex riboswitch folding pathways. Herein, we show how to employ sm-FRET to study the folding pathway of the S-adenosylmethionine (SAM) and how this can be used to understand very specific conformational changes that are at the heart of riboswitch regulation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol, 4, 10.1101/cshperspect.a003566

    Google Scholar 

  2. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388

    Article  CAS  PubMed  Google Scholar 

  4. Cornish PV, Ha T (2007) A survey of single-molecule techniques in chemical biology. ACS Chem Biol 2:53–61

    Article  CAS  PubMed  Google Scholar 

  5. Lemay JF, Penedo JC, Tremblay R et al (2006) Folding of the adenine riboswitch. Chem Biol 13:857–868

    Article  CAS  PubMed  Google Scholar 

  6. Heppell B, Blouin S, Dussault AM et al (2011) Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. Nat Chem Biol 7:384–392

    Article  CAS  PubMed  Google Scholar 

  7. Fiegland LR, Garst AD, Batey RT et al (2012) Single-molecule studies of the lysine riboswitch reveal effector-dependent conformational dynamics of the aptamer domain. Biochemistry 51:9223–9233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Haller A, Rieder U, Aigner M et al (2011) Conformational capture of the SAM-II riboswitch. Nat Chem Biol 7:393–400

    Article  CAS  PubMed  Google Scholar 

  9. Brenner MD, Scanlan MS, Nahas MK et al (2010) Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine. Biochemistry 49:1596–1605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Souliere MF, Altman RB, Schwarz V et al (2013) Tuning a riboswitch response through structural extension of a pseudoknot. Proc Natl Acad Sci U S A 110:E3256–E3264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Heppell B, Mulhbacher J, Penedo JC et al (2009) Application of fluorescent measurements for characterization of riboswitch-ligand interactions. Methods Mol Biol 540:25–37

    Article  CAS  PubMed  Google Scholar 

  12. Lemay JF, Penedo JC, Mulhbacher J et al (2009) Molecular basis of RNA-mediated gene regulation on the adenine riboswitch by single-molecule approaches. Methods Mol Biol 540:65–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Penedo and Lafontaine laboratories for critical reading of the manuscript and the National Sciences and Engineering Research Council of Canada (NSERC) for financial support. D.A.L. is a Fonds de Recherche Santé Québec Senior Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Lafontaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Boudreault, J., Perez-Gonzalez, D.C., Penedo, J.C., Lafontaine, D.A. (2015). Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms. In: Leblanc, B., Rodrigue, S. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 1334. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2877-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2877-4_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2876-7

  • Online ISBN: 978-1-4939-2877-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics