Skip to main content

Molecular Basis of RNA-Mediated Gene Regulation on the Adenine Riboswitch by Single-Molecule Approaches

  • Protocol
  • First Online:
Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 540))

Summary

The adenine-specific pbuE riboswitch undergoes metal ion-dependent folding that involves a long-range tertiary loop–loop interaction between two stem loops. Fluorescence resonance energy transfer (FRET) and single-molecule FRET studies demonstrate the ability of the loops to interact in the absence of the ligand. Although the riboswitch can fold in the absence of adenine, ligand binding stabilizes this folded conformation by increasing the folding and decreasing the unfolding rates of the riboswitch. The presence of the ligand also decreases the magnesium ion concentration required to promote the loop–loop interaction. Single-molecule FRET studies demonstrate that individual aptamer molecules exhibit great heterogeneity in the rates of folding and unfolding, which is reduced in the presence of adenine. Moreover, single-molecule FRET proposes that riboswitch folding proceeds through a complex landscape that involves a discrete intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sudarsan, N., Barrick, J.E., and Breaker, R.R. (2003). Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9, 644–647

    Article  PubMed  CAS  Google Scholar 

  2. Kubodera, T., Watanabe, M., Yoshiuchi, K., Yamashita, N., Nishimura, A., Nakai, S., Gomi, K., and Hanamoto, H. (2003). Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett. 555, 516–520

    Article  PubMed  CAS  Google Scholar 

  3. Serganov, A. and Patel, D.J. (2007). Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Gen. 8, 776–790

    Article  CAS  Google Scholar 

  4. Edwards, T.E. and Ferré-D’Amaré, A.R. (2007). Riboswitches: small-molecule recognition by gene regulatory RNAs. Curr. Opin. Struct. Biol. 17, 273–279

    Article  PubMed  CAS  Google Scholar 

  5. Mandal, M. and Breaker, R.R. (2004). Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat. Struct. Mol. Biol. 11, 29–35

    Article  PubMed  CAS  Google Scholar 

  6. Serganov, A., Yuan, Y.R., Pikovskaya, O., Polonskaia, A., Malinina, L., Phan, A.T., Hobartner, C., Micura, R., Breaker, R.R., and Patel, D.J. (2004). Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741

    Article  PubMed  CAS  Google Scholar 

  7. Batey, R.T., Gilbert, S.D., and Montange, R.K. (2004). Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415

    Article  PubMed  CAS  Google Scholar 

  8. Mandal, M., Boese, B., Barrick, J.E., Winkler, W.C., and Breaker, R.R. (2003). Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586

    Article  PubMed  CAS  Google Scholar 

  9. Clegg, R.M. (1992). Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388

    Article  PubMed  CAS  Google Scholar 

  10. Cornish, P.V. and Ha, T. (2007). A survey of single-molecule techniques in chemical biology. ACS Chem. Biol. 2, 53–61

    Article  PubMed  CAS  Google Scholar 

  11. Lemay, J.F., Penedo J.C., Tremblay, R., Lilley D.M. and Lafontaine, D.A. (2006). Folding of the adenine riboswitch. Chem. Biol. 13, 857–858

    Article  PubMed  CAS  Google Scholar 

  12. Ha, T. (2001). Single-molecule fluorescence resonance energy transfer. Methods 25, 78–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a graduate scholarship (JFL) and a postdoctoral fellowship (JM) from the National Sciences and Engineering Research Council of Canada (NSERC) and by operating grants from the Canadian Institutes of Health Research (DAL) and the Scottish Universities Physics Alliance (JCP). DAL is a CIHR New Investigator Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Lafontaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lemay, JF., Penedo, J.C., Mulhbacher, J., Lafontaine, D.A. (2009). Molecular Basis of RNA-Mediated Gene Regulation on the Adenine Riboswitch by Single-Molecule Approaches. In: Serganov, A. (eds) Riboswitches. Methods in Molecular Biology, vol 540. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-558-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-558-9_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-88-6

  • Online ISBN: 978-1-59745-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics