Skip to main content

The Sheep as a Model of Brain Injury in the Premature Infant

  • Protocol
Animal Models of Neurodevelopmental Disorders

Part of the book series: Neuromethods ((NM,volume 104))

Abstract

Preterm fetal sheep preparations provide unique experimental access to the complex pathophysiological processes that contribute to injury to the human brain during successive periods in development. Recent refinements have resulted in preparations that offer a number of significant advantages to model key aspects of human preterm cerebral injury. We describe a global cerebral ischemia preparation that replicates major features of acute and chronic human cerebral injury and which has provided access to complex clinically relevant studies of cerebral blood flow and neuro-imaging that are not feasible in smaller laboratory animals. Despite the higher costs and technical challenges of instrumented preterm fetal sheep models, they allow an integrated analysis of the spectrum of insults that appear to contribute to cerebral injury in human preterm infants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferriero DM (2006) Can we define the pathogenesis of human periventricular white-matter injury using animal models? J Child Neurol 21:580–581

    Article  PubMed  Google Scholar 

  2. Volpe JJ (2008) Neurology of the newborn. W.B. Saunders, Philadelphia, PA

    Google Scholar 

  3. Back S (2012) Mechanisms of acute and chronic brain injury in the preterm infant. In: Miller S, Shevell M (eds) Acquired brain injury. Mac Keith Press, London

    Google Scholar 

  4. Wilson-Costello D, Fridedman H, Minich N, Fanaroff A, Hack M (2005) Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 115:997–1003

    Article  PubMed  Google Scholar 

  5. Hack M, Taylor H, Drotar D, Schluchter M, Cartar L, Andreias L, Wilson-Costello D, Klein N (2005) Chronic conditions, functional limitations, and special health care needs of school-aged children born with extremely low-birth-weight in the 1990’s. JAMA 294:318–325

    Article  CAS  PubMed  Google Scholar 

  6. Miller SP, Ferriero DM, Leonard C, Piecuch R, Glidden D, Partridge JC, Perez M, Mukherjee P, Vigneron D, Barkovich AJ (2005) Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse neurodevelopmental outcome. J Pediatr 147:609–616

    Article  PubMed  Google Scholar 

  7. Beaino G, Khoshnood B, Kaminski M, Pierrat V, Marret S, Matis J, Ledesert B, Thiriez G, Fresson J, Roze JC, Zupan-Simunek V, Arnaud C, Burguet A, Larroque B, Breart G, Ancel PY (2010) Predictors of cerebral palsy in very preterm infants: the EPIPAGE prospective population-based cohort study. Dev Med Child Neurol 52:e119–e125

    Article  PubMed  Google Scholar 

  8. Mercier CE, Dunn MS, Ferrelli KR, Howard DB, Soll RF (2010) Neurodevelopmental outcome of extremely low birth weight infants from the Vermont Oxford network: 1998-2003. Neonatology 97:329–338

    Article  PubMed Central  PubMed  Google Scholar 

  9. Liu J, Li J, Qin GL, Chen YH, Wang Q (2008) Periventricular leukomalacia in premature infants in mainland China. Am J Perinatol 25:535–540

    Article  PubMed  Google Scholar 

  10. Litt J, Taylor H, Klein N, Hack M (2005) Learning disabilities in children with very low birthweight:prevalence, neuropsychological correlates and educational interventions. J Learn Disabil 8:130–141

    Article  Google Scholar 

  11. Jacobson LK, Dutton GN (2000) Periventricular leukomalacia: an important cause of visual and ocular motility dysfunction in children. Surv Ophthalmol 45:1–13

    Article  CAS  PubMed  Google Scholar 

  12. Glass HC, Fujimoto S, Ceppi-Cozzio C, Bartha AI, Vigneron DB, Barkovich AJ, Glidden DV, Ferriero DM, Miller SP (2008) White-matter injury is associated with impaired gaze in premature infants. Pediatr Neurol 38:10–15

    Article  PubMed Central  PubMed  Google Scholar 

  13. Soria-Pastor S, Gimenez M, Narberhaus A, Falcon C, Botet F, Bargallo N, Mercader JM, Junque C (2008) Patterns of cerebral white matter damage and cognitive impairment in adolescents born very preterm. Int J Dev Neurosci 26:647–654

    Article  PubMed  Google Scholar 

  14. Anderson PJ, De Luca CR, Hutchinson E, Spencer-Smith MM, Roberts G, Doyle LW (2011) Attention problems in a representative sample of extremely preterm/extremely low birth weight children. Dev Neuropsychol 36:57–73

    Article  PubMed  Google Scholar 

  15. Constantinou JC, Adamson-Macedo EN, Mirmiran M, Fleisher BE (2007) Movement, imaging and neurobehavioral assessment as predictors of cerebral palsy in preterm infants. J Perinatol 27:225–229

    Article  CAS  PubMed  Google Scholar 

  16. Spittle AJ, Brown NC, Doyle LW, Boyd RN, Hunt RW, Bear M, Inder TE (2008) Quality of general movements is related to white matter pathology in very preterm infants. Pediatrics 121:e1184–e1189

    Article  PubMed  Google Scholar 

  17. Spittle AJ, Boyd RN, Inder TE, Doyle LW (2009) Predicting motor development in very preterm infants at 12 months’ corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics 123:512–517

    Article  PubMed  Google Scholar 

  18. Bax M, Tydeman C, Flodmark O (2006) Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA 296:1602–1608

    Article  CAS  PubMed  Google Scholar 

  19. Pagliano E, Fedrizzi E, Erbetta A, Bulgheroni S, Solari A, Bono R, Fazzi E, Andreucci E, Riva D (2007) Cognitive profiles and visuoperceptual abilities in preterm and term spastic diplegic children with periventricular leukomalacia. J Child Neurol 22:282–288

    Article  PubMed  Google Scholar 

  20. Li AM, Chau V, Poskitt KJ, Sargent MA, Lupton BA, Hill A, Roland E, Miller SP (2009) White matter injury in term newborns with neonatal encephalopathy. Pediatr Res 65:85–89

    Article  PubMed  Google Scholar 

  21. Lasry O, Shevell MI, Dagenais L (2010) Cross-sectional comparison of periventricular leukomalacia in preterm and term children. Neurology 74:1386–1391

    Article  PubMed  Google Scholar 

  22. Wernovsky G, Shillingford A, Gaynor J (2005) Central nervous system outcomes in children with complex congenital heart disease. Curr Opin Cardiol 20:94–99

    Article  PubMed  Google Scholar 

  23. Miller S, McQuillen P, Hamrick S, Xu D, Glidden D, Charlton N, Karl T, Azakie A, Ferriero D, Barkovich A, Vigneron D (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357:1971–1973

    Article  Google Scholar 

  24. Licht DJ, Shera DM, Clancy RR, Wernovsky G, Montenegro LM, Nicolson SC, Zimmerman RA, Spray TL, Gaynor JW, Vossough A (2009) Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 137:529–536, discussion 536–527

    Article  PubMed Central  PubMed  Google Scholar 

  25. (CDC), C. f. D. C. a. P (2004) Economic costs associated with mental retardation, cerebral palsy, hearing loss and vision impairment – United States, 2003. MMWR Morb Mortal Wkly Rep 53:57–59

    Google Scholar 

  26. Barlow R (1969) The foetal sheep: morphogenesis of the nervous system and histochemical aspects of myelination. J Comp Neurol 135:249–262

    Article  CAS  PubMed  Google Scholar 

  27. Bernhared C, Kolmodin G, Meyerson B (1967) On the prenatal development of function and structure in the somesthetic cortex of the sheep. Prog Brain Res 2:60–77

    Article  Google Scholar 

  28. Cook C, Gluckman P, Johnston B, Williams C (1987) The development of the somatosensory evoked potential in the unanaesthetized fetal lamb. J Dev Physiol 9:441–456

    CAS  PubMed  Google Scholar 

  29. Cook C, Williams C, Gluckman P (1987) Brainstem auditory evoked potential in the fetal lamb, in utero. J Dev Physiol 9:429–440

    CAS  PubMed  Google Scholar 

  30. Gluckman P, Parsons Y (1983) Stereotaxic method and atlas for the ovine fetal forebrain. J Dev Physiol 5:101–128

    CAS  PubMed  Google Scholar 

  31. Vanderwolf C, Cooley R (1990) The sheep brain: a photographic series, 2nd edn. A. J. Kirby Co., London, ON

    Google Scholar 

  32. Riddle A, Luo N, Manese M, Beardsley D, Green L, Rorvik D, Kelly K, Barlow C, Kelly J, Hohimer A, Back S (2006) Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J Neurosci 26:3045–3055

    Article  CAS  PubMed  Google Scholar 

  33. Riddle A, Dean J, Buser JR, Gong X, Maire J, Chen K, Ahmad T, Cai V, Nguyen T, Kroenke C, Hohimer A, Back S (2011) Histopathological correlates of MRI-defined chronic perinatal white matter injury. Ann Neurol 70:493

    Article  PubMed Central  PubMed  Google Scholar 

  34. Back SA, Riddle A, Hohimer AR (2006) Role of instrumented fetal sheep preparations in defining the pathogenesis of human periventricular white matter injury. J Child Neurol 21:582–589

    Article  PubMed  Google Scholar 

  35. Segovia K, Mcclure M, Moravec M, Luo N, Wang Y, Gong X, Riddle A, Craig A, Struve J, Sherman L, Back S (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63:517–526

    Article  Google Scholar 

  36. Back SA, Han BH, Luo NL, Chrichton CA, Tam J, Xanthoudakis S, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22:455–463

    CAS  PubMed  Google Scholar 

  37. Follet PL, Rosenberg PA, Volpe JJ, Jensen FE (2000) NBQX attenuates excitotoxic injury to the developing white matter. J Neurosci 20:9235–9241

    Google Scholar 

  38. Uehara H, Yoshioka H, Kawase S, Nagai H, Ohmae T, Hasegawa K, Sawada T (1999) A new model of white matter injury in neonatal rats with bilateral carotid artery occlusion. Brain Res 837:213–220

    Article  CAS  PubMed  Google Scholar 

  39. Olivier P, Baud O, Evrard P, Gressens P, Verney C (2005) Prenatal ischemia and white matter damage in rats. J Neuropathol Exp Neurol 64:998–1006

    Article  PubMed  Google Scholar 

  40. Marret S, Mukendi R, Gadisseux J-F, Gressens P, Evrard P (1995) Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic-like lesions. J Neuropathol Exp Neurol 54:358

    Article  CAS  PubMed  Google Scholar 

  41. Riddle A, Maire J, Gong X, Chen K, Kroenke CD, Hohimer AR, Back SA (2012) Differential susceptibility to axonopathy in necrotic and non-necrotic perinatal white matter injury. Stroke 43:178

    Article  PubMed Central  PubMed  Google Scholar 

  42. Buser J, Maire J, Riddle A, Gong X, Nguyen T, Nelson K, Luo N, Ren J, Struve J, Sherman L, Miller S, Chau V, Hendson G, Ballabh P, Grafe M, Back S (2012) Arrested pre-oligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 71:93

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lodygensky G, West T, Moravec M, Back S, Dikranien K, Holtzman D, Neil J (2011) Diffusion characteristics associated with neuronal injury and glial activation following hypoxia-ischemia in the immature brain. Magn Reson Med 66:839–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Gunn AJ, Bennet L (2009) Fetal hypoxia insults and patterns of brain injury: insights from animal models. Clin Perinatol 36:579–593

    Article  PubMed Central  PubMed  Google Scholar 

  45. Reddy K, Mallard C, Guan J, Marks K, Bennet L, Gunning M, Gunn A, Gluckman P, Williams C (1998) Maturational change in the cortical response to hypoperfusion injury in the fetal sheep. Pediatr Res 43:674–682

    Article  CAS  PubMed  Google Scholar 

  46. Szymonowicz W, Walker A, Yu V, Stewart M, Cannata J, Cussen L (1990) Regional cerebral blood flow after hemorrhagic hypotension in the preterm, near-term, and newborn lamb. Pediatr Res 28:361–366

    Article  CAS  PubMed  Google Scholar 

  47. Rees S, Breen S, Loeliger M, McCrabb G, Harding R (1999) Hypoxemia near mid-gestation has long-term effects on fetal brain development. J Neuropathol Exp Neurol 58:932–945

    Article  CAS  PubMed  Google Scholar 

  48. Gleason CA, Hamm C, Jones MD Jr (1990) Effect of acute hypoxemia on brain blood flow and oxygen metabolism in immature fetal sheep. Am J Physiol 258:H1064–H1069

    CAS  PubMed  Google Scholar 

  49. Falkowski A, Hammond R, Han V, Richardson B (2002) Apoptosis in the preterm and near term ovine fetal brain and the effect of intermittent umbilical cord occlusion. Dev Brain Res 136:165–173

    Article  CAS  Google Scholar 

  50. Bennet L, Rossenrode S, Gunning MI, Gluckman PD, Gunn AJ (1999) The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J Physiol 517(Pt 1):247–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Welin AK, Svedin P, Lapatto R, Sultan B, Hagberg H, Gressens P, Kjellmer I, Mallard C (2007) Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 61:153–158

    Article  CAS  PubMed  Google Scholar 

  52. Harris AP, Koehler RC, Gleason CA, Jones MD Jr, Traystman RJ (1989) Cerebral and peripheral circulatory responses to intracranial hypertension in fetal sheep. Circ Res 64:991–1000

    Article  CAS  PubMed  Google Scholar 

  53. Rees S, Hale N, De Matteo R, Cardamone L, Tolcos M, Loeliger M, Mackintosh A, Shields A, Probyn M, Greenwood D, Harding R (2010) Erythropoietin is neuroprotective in a preterm ovine model of endotoxin-induced brain injury. J Neuropathol Exp Neurol 69:306–319

    Article  CAS  PubMed  Google Scholar 

  54. Duncan J, Cock M, Scheerlinck J, Westcott K, McLean C, Harding R, Rees S (2006) White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res 52:941–949

    Article  Google Scholar 

  55. Dean J, van de Looij Y, Sizonenko S, Lodygensky G, Lazeyras F, Bolouri H, Kjellmer I, Huppi P, Hagberg H, Mallard C (2011) Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Ann Neurol 70:846

    Article  CAS  PubMed  Google Scholar 

  56. Sorensen A, Pedersen M, Tietze A, Ottosen L, Duus L, Uldbjerg N (2009) BOLD MRI in sheep fetuses: a non-invasive method for measuring changes in tissue oxygenation. Ultrasound Obstet Gynecol 34:687–692

    Article  CAS  PubMed  Google Scholar 

  57. Gunn A, Bennet L (2008) Brain cooling for preterm infants. Clin Perinatal 35:735–748

    Article  Google Scholar 

  58. Pyrds O (1991) Control of cerebral circulation in the high-risk neonate. Ann Neurol 30:321–329

    Article  Google Scholar 

  59. Menke J, Michel E, Hildebrand S (1997) Cross-spectral analysis of cerebral autoregulation dynamics in high risk preterm infants during the perinatal period. Pediatr Res 42:690–699

    Article  CAS  PubMed  Google Scholar 

  60. du Plessis A (2008) Cerebrovascular injury in premature infants: current understanding and challenges for future prevention. Clin Perinatol 35:609–641

    Article  PubMed  Google Scholar 

  61. Soul J, Hammer P, Tsuji M, Saul J, Bassan H, Limperopoulous C, Disalvo D, Moore M, Akins P, Ringer S, Volpe J, Trachtenberg F, du Plessis A (2007) Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 61:467–473

    Article  PubMed  Google Scholar 

  62. Papile L, Rudolph AM, Heymann M (1985) Autoregulation of cerebral blood flow in the preterm fetal lamb. Pediatr Res 19:159–161

    Article  CAS  PubMed  Google Scholar 

  63. Tweed W, Cote J, Pash M, Lou H (1985) Arterial oxygenation determines autoregulation of cerebral blood flow in fetal lamb. Pediatr Res 17:246–249

    Article  Google Scholar 

  64. Helou S, Koehler RC, Gleason CA, Jones MD, Traystman RJ (1994) Cerebrovascular autoregulation during fetal development in sheep. Am J Physiol 266:H1069–H1074

    CAS  PubMed  Google Scholar 

  65. Hohimer AR, Bissonnette JM (1989) Effects of cephalic hypotension, hypertension, and barbiturates on fetal cerebral flood flow and metabolism. Am J Obstet Gynecol 161:1344–1351

    Article  CAS  PubMed  Google Scholar 

  66. Greisen G (2009) To autoregulate or not to autoregulate – that is no longer the question. Semin Pediatr Neurol 16:207–215

    Article  PubMed  Google Scholar 

  67. Tsuji M, Saul J, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe J (2000) Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106:625–632

    Article  CAS  PubMed  Google Scholar 

  68. Raad RA, Tan WK, Bennet L, Gunn AJ, Davis SL, Gluckman PD, Johnston BM, Williams CE (1999) Role of the cerebrovascular and metabolic responses in the delayed phases of injury after transient cerebral ischemia in fetal sheep. Stroke 30:2735–2741

    Article  CAS  PubMed  Google Scholar 

  69. Clapp J III, Peress N, Wesley M, Mann L (1988) Brain damage after intermittent partial cord occlusion in the chronically instrumented fetal lamb. Am J Obstet Gynecol 159:504–509

    Article  CAS  PubMed  Google Scholar 

  70. Ikeda T, Murata Y, Quuilligan E, Choi B, Parer J, Doi S, Park S-D (1998) Physiologic and histologic changes in near-term fetal lambs exposed to asphyxia by partial umbilical cord occlusion. Am J Obstet Gynecol 178:24–32

    Article  CAS  PubMed  Google Scholar 

  71. Ohyu J, Marumo G, Ozawa H, Takashima S, Nakajima K, Kohsaka S, Hamai Y, Machida Y, Kobayashi K, Ryo E, Baba K, Kozuma S, Okai T, Taketani Y (1999) Early axonal and glial pathology in fetal sheep brains with leukomalacia induced by repeated umbilical cord occlusion. Brain Dev 21:248–252

    Article  CAS  PubMed  Google Scholar 

  72. Matsuda T, Okuyama K, Cho K, Hoshi N, Matsumoto Y, Kobayashi Y, Fujimoto S (1999) Induction of antenatal periventricular leukomalacia by hemorrhagic hypotension in the chronically instrumented fetal sheep. Am J Obstet Gynecol 181:725–730

    Article  CAS  PubMed  Google Scholar 

  73. Duncan J, Cock M, Scheerlinck J, Westcott K, McLean C, Harding R, Rees S (2002) White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res 52:941–949

    Article  CAS  PubMed  Google Scholar 

  74. Dalitz P, Harding R, Rees S, Cock M (2003) Prolonged reductions in placental blood flow and cerebral oxygen delivery in preterm fetal sheep exposed to endotoxin: possible factors in white matter injury after acute infection. J Soc Gynecol Investig 10:283–290

    Article  CAS  PubMed  Google Scholar 

  75. Rees S, Stringer M, Just Y, Hooper S, Harding R (1997) The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Dev Brain Res 103:103–118

    Article  CAS  Google Scholar 

  76. Mallard E, Rees S, Stringer M, Cock M, Harding R (1998) Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatr Res 43:262–270

    Article  CAS  PubMed  Google Scholar 

  77. Penning D, Grafe J, Hammond R, Matsuda Y, Patrick J, Richardson B (1994) Neuropathology of the near-term and midgestation ovine fetal brain after sustained in utero hypoxemia. Am J Obstet Gynecol 170:1425–1432

    Article  CAS  PubMed  Google Scholar 

  78. Bagenholm R, Nilsson U, Gotborg C, Kjellmer I (1998) Free radicals are formed in the brain of the fetal sheep during reperfusion after cerebral ischemia. Pediatr Res 43:271–275

    Article  CAS  PubMed  Google Scholar 

  79. Ikeda K, Murata Y, Quilligan EJ, Parer J, Doi S, Park S-D (1998) Brain lipid peroxidation and antioxidant levels in fetal lambs 72 hours after asphyxia from partial umbilical cord occlusion. Am J Obstet Gynecol 178:474–478

    Article  CAS  PubMed  Google Scholar 

  80. Castillo-Melendez M, Chow J, Walker D (2004) Lipid peroxidation, caspase-3 immunoreactivity, and pyknosis in late-gestation fetal sheep brain after umbilical cord occlusion. Pediatr Res 55:864–871

    Article  CAS  PubMed  Google Scholar 

  81. Welin A-K, Sandberg M, Lindblom A, Arvidsson P, Nilsson U, Kjellmer I, Mallard C (2005) White matter injury following prolonged free radical formation in the 0.65 gestation fetal sheep brain. Pediatr Res 58:100–105

    Article  PubMed  Google Scholar 

  82. Baldwin B, Bell F (1963) The anatomy of the cerebral circulation of the sheep and ox. The dynamic distribution of the blood supplied by the carotid and vertebral arteries to cranial regions. J Anat 97:203–215

    PubMed Central  CAS  PubMed  Google Scholar 

  83. McClure M, Riddle A, Manese M, Luo N, Rorvik D, Kelly K, Barlow C, Kelly JJ, Vinecore K, Roberts C, Hohimer A, Back S (2008) Cerebral blood flow heterogeneity in preterm sheep: lack of physiological support for vascular boundary zones in fetal cerebral white matter. J Cereb Blood Flow Metab 28:995–1008

    Article  PubMed Central  PubMed  Google Scholar 

  84. Chao CR, Hohimer AR, Bissonnette JM (1991) Fetal cerebral blood flow and metabolism during oligemia and early postoligemic reperfusion. J Cereb Blood Flow Metab 11:416–423

    Article  CAS  PubMed  Google Scholar 

  85. Bernard SL, Ewen JR, Barlow CH, Kelly JJ, McKinney S, Frazer DA, Glenny RW (2000) High spatial resolution measurements of organ blood flow in small laboratory animals. Am J Physiol Heart Circ Physiol 279(5):H2043–H2052

    Google Scholar 

  86. Hohimer AR, Chao CR, Bissonnette JM (1991) The effect of combined hypoxemia and cephalic hypotension on fetal cerebral blood flow and metabolism. J Cereb Blood Flow Metab 11:99–105

    Article  CAS  PubMed  Google Scholar 

  87. Iwamoto HS, Kaufman T, Keil LC, Rudolph AM (1989) Responses to acute hypoxemia in fetal sheep at 0.6-0.7 gestation. Am J Physiol 256:H613–H620

    CAS  PubMed  Google Scholar 

  88. Rurak DW, Richardson BS, Patrick JE, Carmichael L, Homan J (1990) Oxygen consumption in the fetal lamb during sustained hypoxemia with progressive acidemia. Am J Physiol 258:R1108–R1115

    CAS  PubMed  Google Scholar 

  89. Richardson BS, Rurak D, Patrick JE, Homan J, Carmichael L (1989) Cerebral oxidative metabolism during sustained hypoxaemia in fetal sheep. J Dev Physiol 11:37–43

    CAS  PubMed  Google Scholar 

  90. Yan EB, Baburamani AA, Walker AM, Walker DW (2009) Changes in cerebral blood flow, cerebral metabolites, and breathing movements in the sheep fetus following asphyxia produced by occlusion of the umbilical cord. Am J Physiol Regul Integr Comp Physiol 297:R60–R69

    Article  CAS  PubMed  Google Scholar 

  91. Richardson BS (1993) The fetal brain: metabolic and circulatory responses to asphyxia. Clin Invest Med 16:103–114

    CAS  PubMed  Google Scholar 

  92. Nelson MD Jr, Gonzalez-Gomez I, Gilles FH (1991) Dyke Award. The search for human telencephalic ventriculofugal arteries. AJNR Am J Neuroradiol 12:215–222

    PubMed  Google Scholar 

  93. Mayer PL, Kier EL (1991) The controversy of the periventricular white matter circulation: a review of the anatomic literature. AJNR Am J Neuroradiol 12:223–228

    CAS  PubMed  Google Scholar 

  94. Volpe JJ (2001) The structure of blood vessels in the germinal matrix and the autoregulation of cerebral blood flow in premature infants - reply. Pediatrics 108:1050

    Article  Google Scholar 

  95. Buser J, Segovia K, Dean J, Nelson K, Beardsley D, Gong X, Luo N, Ren J, Wan Y, Riddle A, McClure M, Ji X, Derrick M, Hohimer A, Back S, Tan S (2010) Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia. J Cereb Blood Flow Metab 30:1053–1065

    Article  PubMed Central  PubMed  Google Scholar 

  96. Miller S, Ferriero D (2009) From selective vulnerability to connectivity: insights from newborn brain imaging. Trends Neurosci 32:496–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Ment LR, Hirtz D, Huppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8:1042–1055

    Article  PubMed  Google Scholar 

  98. Mathur AM, Neil JJ, Inder TE (2010) Understanding brain injury and neurodevelopmental disabilities in the preterm infant: the evolving role of advanced magnetic resonance imaging. Semin Perinatol 34:57–66

    Article  PubMed Central  PubMed  Google Scholar 

  99. Rutherford MA, Supramaniam V, Ederies A, Chew A, Bassi L, Groppo M, Anjari M, Counsell S, Ramenghi LA (2010) Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 52:505–521

    Article  PubMed  Google Scholar 

  100. Hope PL, Gould SJ, Howard S, Hamilton PA, Costello AM, Reynolds EO (1988) Precision of ultrasound diagnosis of pathologically verified lesions in the brains of very preterm infants. Dev Med Child Neurol 30:457–471

    Article  CAS  PubMed  Google Scholar 

  101. Schouman-Claeys E, Henry-Feugeas MC, Roset F, Larroche JC, Hassine D, Sadik JC, Frija G, Gabilan JC (1993) Periventricular leukomalacia: correlation between MR imaging and autopsy findings during the first 2 months of life. Radiology 189:59–64

    Article  CAS  PubMed  Google Scholar 

  102. Felderhoff-Mueser U, Rutherford MA, Squier WV, Cox P, Maalouf EF, Counsell SJ, Bydder GM, Edwards AD (1999) Relationship between MR imaging and histopathologic findings of the brain in extremely sick preterm infants. AJNR Am J Neuroradiol 20:1349–1357

    CAS  PubMed  Google Scholar 

  103. Inder TE, Neil JJ, Kroenke CD, Dieni S, Yoder B, Rees S (2005) Investigation of cerebral development and injury in the prematurely born primate by magnetic resonance imaging and histopathology. Dev Neurosci 27:100–111

    Article  CAS  PubMed  Google Scholar 

  104. Childs AM, Cornette L, Ramenghi LA, Tanner SF, Arthur RJ, Martinez D, Levene MI (2001) Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol 56:647–655

    Article  CAS  PubMed  Google Scholar 

  105. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    Google Scholar 

Download references

Acknowledgments

Supported by the National Institutes of Neurological Diseases and Stroke: 1RO1NS054044, R37NS045737-06S1/06S2 to SAB and 1F30NS066704 to AR, the American Heart Association (SAB) and the March of Dimes Birth Defects Foundation (SAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Back M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Back, S.A., Riddle, A., Hohimer, A.R. (2015). The Sheep as a Model of Brain Injury in the Premature Infant. In: Yager, J. (eds) Animal Models of Neurodevelopmental Disorders. Neuromethods, vol 104. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2709-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2709-8_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2708-1

  • Online ISBN: 978-1-4939-2709-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics