Skip to main content

Label-Free Cell Phenotypic Identification of Active Compounds in Traditional Chinese Medicines

  • Protocol
Label-Free Biosensor Methods in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Traditional Chinese medicines (TCMs) have been used in clinic for thousands of years. These TCMs display reliable therapeutic efficacy and are important resources for drug discovery. Elucidating mechanisms of action (MOAs) of active compounds is essential to the development and clarification of TCMs. As one of new generation pharmacological assays, label-free cell phenotypic assays can provide a holistic view of ligand–receptor interactions in living cells with wide pathway coverage, high throughput, and high temporal resolution, thus enabling effectively elucidating the MOAs of TCMs. For identifying active compounds from TCMs, effective separation and purification methods are indispensable since TCMs usually contain hundreds or even thousands of compounds. This chapter provides a general protocol of preparative techniques and label-free cell phenotypic assays to determine the target engagement of active TCM fractions and compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan R, Lin Y (2000) Traditional Chinese medicine: an approach to scientific proof and clinical validation. Pharmacol Ther 86(2):191–198. doi:10.1016/s0163-7258(00)00039-5

    Article  CAS  PubMed  Google Scholar 

  2. Wang JF, Wei DQ, Chou KC (2008) Drug candidates from traditional Chinese medicines. Curr Top Med Chem 8(18):1656–1665. doi:10.2174/156802608786786633

    Article  CAS  PubMed  Google Scholar 

  3. Ma HD, Deng YR, Tian ZG, Lian ZX (2013) Traditional Chinese medicine and immune regulation. Clin Rev Allergy Immunol 44(3):229–241. doi:10.1007/s12016-012-8332-0

    Article  PubMed  Google Scholar 

  4. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335. doi:10.1021/np200906s

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25(3):475–516. doi:10.1039/b514294f

    Article  CAS  PubMed  Google Scholar 

  6. Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10(7):507–519. doi:10.1038/nrd3480

    Article  CAS  PubMed  Google Scholar 

  7. Gleeson MP, Hersey A, Montanari D, Overington J (2011) Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov 10(3):197–208. doi:10.1038/nrd3367

    Article  CAS  PubMed  Google Scholar 

  8. Butcher EC (2005) Can cell systems biology rescue drug discovery? Nat Rev Drug Discov 4(6):461–467. doi:10.1038/nrd1754

    Article  CAS  PubMed  Google Scholar 

  9. Kepp O, Galluzzi L, Lipinski M, Yuan JY, Kroemer G (2011) Cell death assays for drug discovery. Nat Rev Drug Discov 10(3):221–237. doi:10.1038/nrd3373

    Article  CAS  PubMed  Google Scholar 

  10. Fang Y, Ferrie AM, Fontaine NH, Yuen PK (2005) Characteristics of dynamic mass redistribution of epidermal growth factor receptor signaling in living cells measured with label-free optical biosensors. Anal Chem 77(17):5720–5725. doi:10.1021/ac050887n

    Article  CAS  PubMed  Google Scholar 

  11. Fang Y (2007) Non-invasive optical biosensor for probing cell signaling. Sensors 7(10):2316–2329. doi:10.3390/s7102316

    Article  PubMed Central  CAS  Google Scholar 

  12. Fu HY, Fu WQ, Sun MJ, Shou QY, Zhai YY, Cheng HQ, Teng L, Mou XZ, Li YW, Wan SY, Zhang SS, Xu QQ, Zhang X, Wang JC, Zhu J, Wang XB, Xu X, Lv GY, Jin L, Guo WS, Ke YH (2011) Kinetic cellular phenotypic profiling: prediction, identification, and analysis of bioactive natural products. Anal Chem 83(17):6518–6526. doi:10.1021/ac201670e

    Article  CAS  PubMed  Google Scholar 

  13. Fang Y (2011) The development of label-free cellular assays for drug discovery. Expert Opin Drug Discov 6(12):1285–1298. doi:10.1517/17460441.2012.642360

    Article  CAS  PubMed  Google Scholar 

  14. Fang Y (2006) Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev Technol 4(5):583–595. doi:10.1089/adt.2006.4.583

    Article  CAS  PubMed  Google Scholar 

  15. Fang Y (2013) Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Toxicol Methods 67(2):69–81. doi:10.1016/j.vascn.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  16. Giaever I, Keese CR (1993) A morphological biosensor for mammalian-cells. Nature 366(6455):591–592. doi:10.1038/366591a0

    Article  CAS  PubMed  Google Scholar 

  17. Wegener J, Keese CR, Giaever I (2000) Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259(1):158–166. doi:10.1006/excr.2000.4919

    Article  CAS  PubMed  Google Scholar 

  18. Verrier F, An SO, Ferrie AM, Sun H, Kyoung M, Deng H, Fang Y, Benkovic SJ (2011) GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis. Nat Chem Biol 7(12):909–915. doi:10.1038/nchembio.690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Schroder R, Janssen N, Schmidt J, Kebig A, Merten N, Hennen S, Muller A, Blattermann S, Mohr-Andra M, Zahn S, Wenzel J, Smith NJ, Gomeza J, Drewke C, Milligan G, Mohr K, Kostenis E (2010) Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat Biotechnol 28(9):943–950. doi:10.1038/nbt.1671

    Article  PubMed  Google Scholar 

  20. Deng H, Wang C, Su M, Fang Y (2012) Probing biochemical mechanisms of action of muscarinic M3 receptor antagonists with label-free whole cell assays. Anal Chem 84(19):8232–8239. doi:10.1021/ac301495n

    Article  CAS  PubMed  Google Scholar 

  21. Schrage R, Seemann WK, Klockner J, Dallanoce C, Racke K, Kostenis E, De Amici M, Holzgrabe U, Mohr K (2013) Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br J Pharmacol 169(2):357–370. doi:10.1111/bph.12003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Liang XM, Jin Y, Wang YP, Jin GW, Fu Q, Xiao YS (2009) Qualitative and quantitative analysis in quality control of traditional Chinese medicines. J Chromatogr A 1216(11):2033–2044. doi:10.1016/j.chroma.2008.07.026

    Article  CAS  PubMed  Google Scholar 

  23. Yang M, Sun JH, Lu ZQ, Chen GT, Guan SH, Liu X, Jiang BH, Ye M, Guo DA (2009) Phytochemical analysis of traditional Chinese medicine using liquid chromatography coupled with mass spectrometry. J Chromatogr A 1216(11):2045–2062. doi:10.1016/j.chroma.2008.08.097

    Article  CAS  PubMed  Google Scholar 

  24. Zhao HY, Jiang JG (2010) Application of chromatography technology in the separation of active components from nature derived drugs. Mini-Rev Med Chem 10(13):1223–1234

    Article  CAS  PubMed  Google Scholar 

  25. Gilar M, Olivova P, Daly AE, Gebler JC (2005) Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77(19):6426–6434. doi:10.1021/ac050923i

    Article  CAS  PubMed  Google Scholar 

  26. Liu YM, Guo ZM, Jin Y, Xue XY, Xu Q, Zhang FF, Liang XM (2008) “Click oligo(ethylene glycol)”: an excellent orthogonal stationary phase to C18 for two-dimensional reversed-phase/reversed-phase liquid chromatography. J Chromatogr A 1206(2):153–159. doi:10.1016/j.chroma.2008.08.013

    Article  CAS  PubMed  Google Scholar 

  27. Feng JT, Xiao YS, Guo ZM, Yu DH, Jin Y, Liang XM (2011) Purification of compounds from Lignum Dalbergia Odorifera using two-dimensional preparative chromatography with Click oligo (ethylene glycol) and C18 column. J Sep Sci 34(3):299–307. doi:10.1002/jssc.201000609

    Article  CAS  PubMed  Google Scholar 

  28. Jin GW, Dai YT, Feng JT, Qin XM, Xue XY, Zhang FF, Liang XM (2010) 2-D RP/RPLC method to separate components in Fructus schisandrae chinensis. J Sep Sci 33(4–5):564–569. doi:10.1002/jssc.200900563

    Article  CAS  PubMed  Google Scholar 

  29. Liu YM, Xue XY, Guo ZM, Xu Q, Zhang FF, Liang XM (2008) Novel two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography, an excellent orthogonal system for practical analysis. J Chromatogr A 1208(1–2):133–140. doi:10.1016/j.chroma.2008.08.079

    Article  CAS  PubMed  Google Scholar 

  30. Guo XJ, Zhang XL, Feng JT, Guo ZM, Xiao YS, Liang XM (2013) Purification of saponins from leaves of Panax notoginseng using preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography. Anal Bioanal Chem 405(10):3413–3421. doi:10.1007/s00216-013-6721-8

    Article  CAS  PubMed  Google Scholar 

  31. Zhao YY, Guo ZM, Zhang XL, Liang XM, Zhang YK (2010) Off-line 2-D RPLC/RPLC method for separation of components in Dalbergia odorifera T. Chen. J Sep Sci 33(9):1224–1230. doi:10.1002/jssc.200900778

    CAS  PubMed  Google Scholar 

  32. Liu YF, Feng JT, Xiao YS, Guo ZM, Zhang J, Xue XY, Ding J, Zhang XL, Liang XM (2010) Purification of active bufadienolides from toad skin by preparative reversed-phase liquid chromatography coupled with hydrophilic interaction chromatography. J Sep Sci 33(10):1487–1494. doi:10.1002/jssc.200900848

    Article  CAS  PubMed  Google Scholar 

  33. Liu YM, Guo ZM, Feng JT, Xue XY, Zhang FF, Xu Q, Liang XM (2009) Development of orthogonal two-dimensional hydrophilic interaction chromatography systems with the introduction of novel stationary phases. J Sep Sci 32(17):2871–2876. doi:10.1002/jssc.200900086

    Article  CAS  PubMed  Google Scholar 

  34. Liang Z, Li KY, Wang XL, Ke YX, Jin Y, Liang XM (2012) Combination of off-line two-dimensional hydrophilic interaction liquid chromatography for polar fraction and two-dimensional hydrophilic interaction liquid chromatography x reversed-phase liquid chromatography for medium-polar fraction in a traditional Chinese medicine. J Chromatogr A 1224:61–69. doi:10.1016/j.chroma.2011.12.046

    Article  CAS  PubMed  Google Scholar 

  35. Long Z, Guo ZM, Xue XY, Zhang XL, Liang XM (2013) Two-dimensional strong cation exchange/positively charged reversed-phase liquid chromatography for alkaloid analysis and purification. J Sep Sci 36(24):3845–3852. doi:10.1002/jssc.201300863

    Article  CAS  PubMed  Google Scholar 

  36. Fang Y (2012) Ligand-receptor interaction platforms and their applications for drug discovery. Expert Opin Drug Discov 7(10):969–988. doi:10.1517/17460441.2012.715631

    Article  CAS  PubMed  Google Scholar 

  37. Ferrie AM, Wu Q, Fang Y (2010) Resonant waveguide grating imager for live cell sensing. Appl Phys Lett 97(22):223704. doi:10.1063/1.3522894

    Article  PubMed Central  PubMed  Google Scholar 

  38. Fang Y (2011) Label-free biosensors for cell biology. Intl J Electrochem 2011:460850. doi:10.4061/2011/460850

    Article  Google Scholar 

  39. Schroder R, Schmidt J, Blattermann S, Peters L, Janssen N, Grundmann M, Seemann W, Kaufel D, Merten N, Drewke C, Gomeza J, Milligan G, Mohr K, Kostenis E (2011) Applying label-free dynamic mass redistribution technology to frame signaling of G protein-coupled receptors noninvasively in living cells. Nat Protoc 6(11):1748–1760. doi:10.1038/nprot.2011.386

    Article  PubMed  Google Scholar 

  40. Deng H, Hu H, Fang Y (2011) Tyrphostin analogs are GPR35 agonists. FEBS Lett 585(12):1957–1962. doi:10.1016/j.febslet.2011.05.026

    Article  CAS  PubMed  Google Scholar 

  41. Ferrie AM, Sun H, Fang Y (2011) Label-free integrative pharmacology on-target of drugs at the beta(2)-adrenergic receptor. Sci Rep 1:1–8. doi:10.1038/srep00033

    Article  Google Scholar 

  42. Deng H, Sun H, Fang Y (2013) Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M-3 receptors. J Pharmacol Toxicol Methods 68(3):323–333. doi:10.1016/j.vascn.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  43. Xiao C, Luong JHT (2003) On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol Prog 19(3):1000–1005. doi:10.1021/bp025733x

    Article  CAS  PubMed  Google Scholar 

  44. Bagnaninchi PO, Drummond N (2011) Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. Proc Natl Acad Sci U S A 108(16):6462–6467. doi:10.1073/pnas.1018260108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91(5):1925–1940. doi:10.1529/biophysj.105.077818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Inglese J, Johnson RL, Simeonov A, Xia MH, Zheng W, Austin CP, Auld DS (2007) High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 3(8):466–479. doi:10.1038/nchembio.2007.17

    Article  CAS  PubMed  Google Scholar 

  47. Hertzberg RP, Pope AJ (2000) High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol 4(4):445–451. doi:10.1016/s1367-5931(00)00110-1

    Article  CAS  PubMed  Google Scholar 

  48. Fang Y (2010) Live cell optical sensing for high throughput applications. Adv Biochem Eng Biotechnol 118:153–163. doi:10.1007/10_2009_4

    CAS  PubMed  Google Scholar 

  49. Dodgson K, Gedge L, Murray DC, Coldwell M (2009) A 100K well screen for a muscarinic receptor using the Epic (R) label-free system – a reflection on the benefits of the label-free approach to screening seven-transmembrane receptors. J Recept Signal Transduct 29(3–4):163–172. doi:10.1080/10799890903079844

    Article  CAS  Google Scholar 

  50. Tran E, Fang Y (2008) Duplexed label-free G protein-coupled receptor assays for high-throughput screening. J Biomol Screen 13(10):975–985. doi:10.1177/1087057108326141

    Article  CAS  PubMed  Google Scholar 

  51. Zhang XL, Deng H, Xiao YS, Xue XY, Ferrie AM, Tran E, Liang XM, Fang Y (2014) Label-free cell phenotypic profiling identifies pharmacologically active compounds in two traditional Chinese medicinal plants. RSC Adv 4(50):26368–26377. doi:10.1039/c4ra03609c

    Article  CAS  Google Scholar 

  52. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR – a perspective. J Mol Endocrinol 34(3):597–601. doi:10.1677/jme.1.01755

    Article  CAS  PubMed  Google Scholar 

  53. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935. doi:10.1126/science.1132939

    Article  CAS  PubMed  Google Scholar 

  54. Hu H, Deng H, Fang Y (2012) Label-free phenotypic profiling identified D-luciferin as a GPR35 agonist. PLoS One 7(4):e34934. doi:10.1371/journal.pone.0034934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Tran E, Sun H, Fang Y (2012) Dynamic mass redistribution assays decode surface influence on signaling of endogenous purinergic P2Y receptors. Assay Drug Dev Technol 10(1):37–45. doi:10.1089/adt.2011.0392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, Ijzerman AP, International Union of Basic and Clinical Pharmacology (2011) LXXXII: nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B). Pharmacol Rev 63(2):269–290. doi:10.1124/pr.110.003301

    Article  CAS  PubMed  Google Scholar 

  57. Barbieri JT, Cortina G (1988) ADP-ribosyltransferase mutations in the catalytic s-1 subunit of pertussis toxin. Infect Immun 56(8):1934–1941

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Gill DM, Meren R (1978) ADP-ribosylation of membrane proteins catalyzed by cholera toxin – basis of activation of adenylate-cyclase. Proc Natl Acad Sci U S A 75(7):3050–3054. doi:10.1073/pnas.75.7.3050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Tran E, Fang Y (2009) Label-free optical biosensor for probing integrative role of adenylyl cyclase in G protein-coupled receptor signaling. J Recept Signal Transduct 29(3–4):154–162. doi:10.1080/10799890903052544

    Article  CAS  Google Scholar 

  60. Jin WZ, Lo TM, Loh HH, Thayer SA (1994) U73122 inhibits phospholipase c-dependent calcium mobilization in neuronal cells. Brain Res 642(1–2):237–243. doi:10.1016/0006-8993(94)90927-x

    Article  CAS  PubMed  Google Scholar 

  61. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29(11):1046–U1124. doi:10.1038/nbt.1990

    Article  CAS  PubMed  Google Scholar 

  62. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132. doi:10.1038/nbt1358

    Article  CAS  PubMed  Google Scholar 

  63. Cordell GA, Quinn-Beattie ML, Farnsworth NR (2001) The potential of alkaloids in drug discovery. Phytother Res 15(3):183–205. doi:10.1002/ptr.890

    Article  CAS  PubMed  Google Scholar 

  64. Zhang J, Jin Y, Liu YF, Mao YS, Feng JT, Xue XY, Zhang XL, Liang XM (2009) Purification of alkaloids from Corydalis yanhusuo W.T. Wang using preparative 2-D HPLC. J Sep Sci 32(9):1401–1406. doi:10.1002/jssc.200800729

    Article  CAS  PubMed  Google Scholar 

  65. Wang CR, Guo ZM, Zhang J, Zeng J, Zhang XL, Liang XM (2011) High-performance purification of quaternary alkaloids from Corydalis yanhusuo W.T. Wang using a new polar-copolymerized stationary phase. J Sep Sci 34(1):53–58. doi:10.1002/jssc.201000625

    Article  CAS  PubMed  Google Scholar 

  66. Wang CR, Guo ZM, Long Z, Zhang XL, Liang XM (2013) Overloading study of basic compounds with a positively charged C18 column in liquid chromatography. J Chromatogr A 1281:60–66. doi:10.1016/j.chroma.2013.01.074

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y, Wang CR, Wang L, Parks GS, Zhang XL, Guo ZM, Ke YX, Li KW, Kim MK, Vo B, Borrelli E, Ge GB, Yang L, Wang ZW, Garcia-Fuster MJ, Luo ZD, Liang XM, Civelli O (2014) A novel analgesic isolated from a traditional Chinese medicine. Curr Biol 24(2):117–123. doi:10.1016/j.cub.2013.11.039

    Article  PubMed Central  PubMed  Google Scholar 

  68. Steyn PS, van Heerden FR (1998) Bufadienolides of plant and animal origin. Nat Prod Rep 15(4):397–413

    Article  CAS  PubMed  Google Scholar 

  69. Li XL, Liu YF, Shen AJ, Wang CR, Yan JY, Zhao WJ, Liang XM (2014) Efficient purification of active bufadienolides by a class separation method based on hydrophilic solid-phase extraction and reversed-phase high performance liquid chromatography. J Pharm Biomed Anal 97:54–64. doi:10.1016/j.jpba.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  70. Oleszek WA (2002) Chromatographic determination of plant saponins. J Chromatogr A 967(1):147–162. doi:10.1016/s0021-9673(01)01556-4

    Article  CAS  PubMed  Google Scholar 

  71. Oleszek W, Bialy Z (2006) Chromatographic determination of plant saponins – an update (2002–2005). J Chromatogr A 1112(1–2):78–91. doi:10.1016/j.chroma.2006.01.037

    Article  CAS  PubMed  Google Scholar 

  72. Guo XJ, Zhang XL, Guo ZM, Liu YF, Shen AJ, Jin GW, Liang XM (2014) Hydrophilic interaction chromatography for selective separation of isomeric saponins. J Chromatogr A 1325:121–128. doi:10.1016/j.chroma.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  73. de Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brinkman UAT (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112(1–2):31–63. doi:10.1016/j.chroma.2006.01.019

    Article  PubMed  Google Scholar 

  74. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13(10):572–584. doi:10.1016/s0955-2863(02)00208-5

    Article  CAS  PubMed  Google Scholar 

  75. Zhang H, Guo ZM, Li W, Feng JT, Xiao YS, Zhang FF, Xue XY, Liang XM (2009) Purification of flavonoids and triterpene saponins from the licorice extract using preparative HPLC under RP and HILIC mode. J Sep Sci 32(4):526–535. doi:10.1002/jssc.200800526

    Article  CAS  PubMed  Google Scholar 

  76. Wang YP, Xue XY, Xiao YS, Zhang FF, Xu Q, Liang XM (2008) Purification and preparation of compounds from an extract of Scutellaria barbata D. Don using preparative parallel high performance liquid chromatography. J Sep Sci 31(10):1669–1676. doi:10.1002/jssc.200700609

    Article  CAS  PubMed  Google Scholar 

  77. Zhang XL, Liu YF, Guo ZM, Feng JT, Dong J, Fu Q, Wang CR, Xue XY, Xiao YS, Liang XM (2012) The herbalome-an attempt to globalize Chinese herbal medicine. Anal Bioanal Chem 402(2):573–581. doi:10.1007/s00216-011-5533-y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmiao Liang .

Editor information

Editors and Affiliations

6 Glossary

TCM

Traditional Chinese medicine

MOA

Mechanism of action

FDA

Food and Drug Administration

HPLC

High-performance liquid chromatography

2D-LC

Two-dimensional liquid chromatography

RPLC

Reversed-phase liquid chromatography

HILIC

Hydrophilic interaction liquid chromatography

IEX

Ion-exchange chromatography

FMCs

Fine multicomponents

ADME/Tox

    Absorption, distribution, metabolism, excretion and toxicity

RWG

Resonant waveguide grating

DMR

Dynamic mass redistribution

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liang, X., Wang, J., Zhang, X., Fang, Y. (2015). Label-Free Cell Phenotypic Identification of Active Compounds in Traditional Chinese Medicines. In: Fang, Y. (eds) Label-Free Biosensor Methods in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2617-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2617-6_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2616-9

  • Online ISBN: 978-1-4939-2617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics