Skip to main content

Infection of Human Neutrophils to Study Virulence Properties of Mycobacterium tuberculosis

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1285))

  • 4799 Accesses

Abstract

Polymorphonuclear neutrophils (PMN) are professional phagocytes and the first line of defense against invading microbes. Upon infection with Mycobacterium tuberculosis, PMN are attracted to the site of infection along an interleukin 8 gradient. In patients with active tuberculosis, PMN comprise the predominant population in the lung and carry the main mycobacterial load suggesting a minor role for PMN in protective host defense against M. tuberculosis but rather in pathology. Therefore, better understanding of PMN biology in tuberculosis is of pivotal importance to develop novel immune modulating measures and host directed therapies. Virulent M. tuberculosis escape the otherwise microbicidal armamentarium of PMNs by inducing necrotic cell death through the PMN’s own reactive oxygen species. Studying the interactions between PMN and different M. tuberculosis strains, and virulence factors thereof, is vital to comprehend tuberculosis pathogenesis. Working with PMN is challenging as these cells are non-adherent, motile and—with a half-life of 6–12 h in vitro—rather short-lived. Here, we provide an isolation and infection protocol that is tailored to study mycobacterial infection in human PMN regarding the intracellular fate of mycobacteria and host cell responses, such as cell death and release of microbicidal effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen LA (2003) Mechanisms of pathogenesis: evasion of killing by polymorphonuclear leukocytes. Microbes Infect 5:1329–1335

    Article  CAS  PubMed  Google Scholar 

  2. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5(14):1317–1327

    Article  CAS  PubMed  Google Scholar 

  3. Nordenfelt P, Tapper H (2011) Phagosome dynamics during phagocytosis by neutrophils. J Leukoc Biol 90:271–284

    Article  CAS  PubMed  Google Scholar 

  4. Kjeldsen L, Bainton DF, Sengelov H, Borregaard N (1993) Structural and functional heterogeneity among peroxidase-negative granules in human neutrophils: identification of a distinct gelatinase-containing granule subset by combined immunocytochemistry and subcellular fractionation. Blood 82:3183–3191

    CAS  PubMed  Google Scholar 

  5. Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198(5):773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pokkali S, Das SD (2009) Augmented chemokine levels and chemokine receptor expression on immune cells during pulmonary tuberculosis. Hum Immunol 70:110–115

    Article  CAS  PubMed  Google Scholar 

  7. Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, Tufariello J, Flynn J, Chan J (2006) Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8:218–232

    Article  CAS  PubMed  Google Scholar 

  8. Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH, Hwang SH, Cho SN, Via LE, Barry CE III (2010) Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137:122–128

    Article  PubMed  Google Scholar 

  9. Lowe DM, Redford PS, Wilkinson RJ, O’Garra A, Martineau AR (2012) Neutrophils in tuberculosis: friend or foe? Trends Immunol 33(1):14–25

    Article  CAS  PubMed  Google Scholar 

  10. Pichugin AV, Yan BS, Sloutsky A, Kobzik L, Kramnik I (2009) Dominant role of the sst1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. Am J Pathol 174:2190–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vilaplana C, Marzo E, Tapia G, Diaz J, Garcia V, Cardona PJ (2013) Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis 208(2):199–202

    Article  CAS  PubMed  Google Scholar 

  12. Corleis B, Korbel D, Wilson R, Bylund J, Chee R, Schaible UE (2012) Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Microbiol 14:1109–1121

    Article  CAS  PubMed  Google Scholar 

  13. Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, Modlin RL, Brinkmann V, Kaufmann SH (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med 9(8):1039–1046

    Article  CAS  PubMed  Google Scholar 

  14. Winau F, Weber S, Sad S, de Diego J, Hoops SL, Breiden B, Sandhoff K, Brinkmann V, Kaufmann SH, Schaible UE (2006) Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24(1):105–117

    Article  CAS  PubMed  Google Scholar 

  15. Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell RG, Derrick SC, Collins FM, Morris SL, King CH, Jacobs WR (2003) The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 100(21):12420–12425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu Y, Loison F, Luo HR (2010) Neutrophil spontaneous death is mediated by down-regulation of autocrine signaling through GPCR, PI3Kgamma, ROS, and actin. Proc Natl Acad Sci U S A 107:2950–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG Priority Programme 1580 “Intracellular Compartments as Places of Pathogen-Host-Interaction” and the Research Center Borstel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich E. Schaible .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dallenga, T., Corleis, B., Schaible, U.E. (2015). Infection of Human Neutrophils to Study Virulence Properties of Mycobacterium tuberculosis . In: Parish, T., Roberts, D. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 1285. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2450-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2450-9_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2449-3

  • Online ISBN: 978-1-4939-2450-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics