Skip to main content

Introduction to Macroporous Cryogels

  • Protocol
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1286))

Abstract

Cryogels are highly elastic three-dimensional materials consisting of a network of interconnected macropores. This unique morphology combined with high mechanical and chemical stability provides excellent mass flow properties. The matrices are synthesized at subzero temperatures from almost any gel-forming precursor. The main fields of application are in biotechnology as 3D-scaffold for cell cultivation, and tissue engineering, or bioseparation as chromatographic media for the separation and purification of biomolecules. This chapter briefly highlights the preparation, properties, and application of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hage DS (2006) Handbook of affinity chromatography, 2nd edn. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  2. Lowe CR, Lowe AR, Gupta G (2001) New developments in affinity chromatography with potential application in the production of biopharmaceuticals. J Biochem Biophys Method 49:561–574

    Article  CAS  Google Scholar 

  3. Schiel JE, Joseph KS, Hage DS (2010) Biointeraction Affinity Chromatography: General Principles and Recent Developments. Adv Chromatogr 48:145–193

    Article  CAS  PubMed  Google Scholar 

  4. Moser AC, Hage DS (2010) Immunoaffinity chromatography: an introduction to applications and recent developments. Bioanalysis 2:769–790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Švec F, Tennikova TB, Deyl Z (2003) Monolithic materials – preparation, properties and applications. Elsevier, Amsterdam

    Google Scholar 

  6. Buchmeiser MR (2007) Polymeric monolithic materials: Syntheses, properties, functionalization and applications. Polymer 48:2187–2198

    Article  CAS  Google Scholar 

  7. Jungbauer A, Hahn R (2004) Monoliths for fast bioseparation and bioconversion and their applications in biotechnology. J Sep Sci 27:767–778

    Article  CAS  PubMed  Google Scholar 

  8. Svec F (2010) Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217:902–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem 405:2133–2145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mattiasson B, Kumar A, Galaev IY (2010) Macroporous polymers. CRC Press Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  11. Lozinsky VI, Vainerman ES, Korotaeva GF, Rogozhin SV (1984) Study of cryostructurization of polymer systems. 3. Cryostructurization in organic media. Colloid Polym Sci 262:617–622

    Article  Google Scholar 

  12. Lozinsky VI (2014) A brief history of polymeric cryogels. In: Okay O (ed) Polymeric cryogels. Springer, Berlin, pp 1–48

    Chapter  Google Scholar 

  13. Erturk G, Mattiasson B (2014) Cryogels-versatile tools in bioseparation. J Chromatogr A 1357:24–35

    Article  CAS  PubMed  Google Scholar 

  14. Lozinsky VI, Plieva FM (1998) Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme Microb Technol 23:227–242

    Article  CAS  Google Scholar 

  15. Shaskol'skii BL, Fogorasi MS, Stanescu MD, Lozinsky VI (2009) Application of poly(vinyl alcohol) cryogels to biotechnology VII. Composite immobilized biocatalysts containing particles of enzyme preparation entrapped in the matrix of poly(vinyl alcohol)cryogel. Biotekhnologiya 71–82

    Google Scholar 

  16. Lozinsky VI (2008) Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russ Chem Bull 57:1015–1032

    Article  CAS  Google Scholar 

  17. Luckanagul J, Lee LA, Nguyen QL, Sitasuwan P, Yang X, Shazly T, Wang Q (2012) Porous alginate hydrogel functionalized with virus as three-dimensional scaffolds for bone differentiation. Biomacromolecules 13:3949–3958

    CAS  PubMed  Google Scholar 

  18. Khan F, Ahmad SR (2013) Polysaccharides and Their Derivatives for Versatile Tissue Engineering Application. Macromol Biosci 13:395–421

    Article  CAS  PubMed  Google Scholar 

  19. Bhat S, Kumar A (2012) Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications. J Biosci Bioeng 114:663–670

    Article  CAS  PubMed  Google Scholar 

  20. Takei T, Nakahara H, Ijima H, Kawakami K (2012) Synthesis of a chitosan derivative soluble at neutral pH and gellable by freeze-thawing, and its application in wound care. Acta Biomater 8:686–693

    Article  CAS  PubMed  Google Scholar 

  21. Zhan X-Y, Lu D-P, Lin D-Q, Yao S-J (2013) Preparation and characterization of supermacroporous polyacrylamide cryogel beads for biotechnological application. J Appl Polym Sci 130:3082–3089

    Article  CAS  Google Scholar 

  22. Demiryas N, Tuzmen N, Galaev IY, Piskin E, Denizli A (2007) Poly(acrylamide-allyl glycidyl ether) cryogel as a novel stationary phase in dye-affinity chromatography. J Appl Polym Sci 105:1808–1816

    Article  CAS  Google Scholar 

  23. Yao KJ, Shen SC, Yun JX, Wang LH, He XJ, Yu XM (2006) Preparation of polyacrylamide-based supermacroporous monolithic cryogel beds under freezing-temperature variation conditions. Chem Eng Sci 61:6701–6708

    Article  CAS  Google Scholar 

  24. Zamecnik C, Loureiro MJ, Postnikoff C, Kong Y, Penlidis A (2012) Synthesis and Morphology of poly(N-isopropylacrylamide) Nanocomposites with Emulsion Templated Nanoporous Structure. J Macromol Sci A 49:906–909

    Article  CAS  Google Scholar 

  25. Srivastava A, Jain E, Kumar A (2007) The physical characterization of supermacroporous poly(N-isopropylacrylamide) cryogel: Mechanical strength and swelling/de-swelling kinetics. Mater Sci Eng A 464:93–100

    Article  Google Scholar 

  26. Percin I, Saglar E, Yavuz H, Aksoz E, Denizli A (2011) Poly(hydroxyethyl methacrylate) based affinity cryogel for plasmid DNA purification. Int J Biol Macromol 48:577–582

    Article  CAS  PubMed  Google Scholar 

  27. Savina IN, Cnudde V, D'hollander S, Van Hoorebeke L, Mattiasson B, Galaev IY, Du Prez F (2007) Cryogels from poly(2-hydroxyethyl methacrylate): macroporous, interconnected materials with potential as cell scaffolds. Soft Matter 3:1176–1184

    Article  CAS  Google Scholar 

  28. Reichelt S, Abe C, Hainich S, Knolle W, Decker U, Prager A, Konieczny R (2013) Electron-beam derived polymeric cryogels. Soft Matter 9:2484–2492

    Article  CAS  Google Scholar 

  29. Lévesque SG, Lim RM, Shoichet MS (2005) Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials 26:7436–7446

    Article  PubMed  Google Scholar 

  30. Zhou D, Shen S, Yun J, Yao K, Lin D-Q (2012) Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications. Front Chem Sci Eng 6:339–347

    Article  CAS  Google Scholar 

  31. Reichelt S, Naumov S, Knolle W, Prager A, Decker U, Becher J, Weisser J, Schnabelrauch M (2014) Studies on the formation and characterization of macroporous electron-beam generated hyaluronan cryogels. Radiat Phys Chem 105:69–77

    Article  CAS  Google Scholar 

  32. Reichelt S, Becher J, Weisser J, Prager A, Decker U, Möller S, Berg A, Schnabelrauch M (2014) Biocompatible polysaccharide-based cryogels. Mater Sci Eng C 35:164–170

    Article  CAS  Google Scholar 

  33. Naumov S, Knolle W, Becher J, Schnabelrauch M, Reichelt S (2014) Electron-beam generated porous dextran gels: Experimental and quantum chemical studies. Int J Radiat Biol 90:503–511

    Article  CAS  PubMed  Google Scholar 

  34. Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B (2001) The potential of polymeric cryogels in bioseparation. Bioseparation 10:163–188

    Article  CAS  PubMed  Google Scholar 

  35. Plieva FM, Karlsson M, Aguilar MR, Gomez D, Mikhalovsky S, Galaev' IY (2005) Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter 1:303–309

    Article  CAS  Google Scholar 

  36. Plieva F, Xiao HT, Galaev IY, Bergenstahl B, Mattiasson B (2006) Macroporous elastic polyacrylamide gels prepared at subzero temperatures: control of porous structure. J Mater Chem 16:4065–4073

    Article  CAS  Google Scholar 

  37. Petrov P, Petrova E, Tsvetanov CB (2009) UV-assisted synthesis of super-macroporous polymer hydrogels. Polymer 50:1118–1123

    Article  CAS  Google Scholar 

  38. Kostova B, Momekova D, Petrov P, Momekov G, Toncheva-Moncheva N, Tsvetanov CB, Lambov N (2011) Poly(ethoxytriethyleneglycol acrylate) cryogels as novel sustained drug release systems for oral application. Polymer 52:1217–1222

    Article  CAS  Google Scholar 

  39. Kahveci MU, Beyazkilic Z, Yagci Y (2010) Polyacrylamide Cryogels by Photoinitiated Free Radical Polymerization. J Polym Sci A 48:4989–4994

    Article  CAS  Google Scholar 

  40. Kumakura M (2001) Preparation method of porous polymer materials by radiation technique and its application. Polym Adv Technol 12:415–421

    Article  CAS  Google Scholar 

  41. Kaetsu I (1993) Radiation synthesis of polymeric materials for biomedical and biochemical applications. Adv Polym Sci 105:81–97

    Article  CAS  Google Scholar 

  42. Reichelt S, Prager A, Abe C, Knolle W (2014) Tailoring the structural properties of macroporous electron-beam polymerized cryogels by pore forming agents and the monomer selection. Radiat Phys Chem 94:40–44

    Article  CAS  Google Scholar 

  43. Jahangiri E, Reichelt S, Thomas I, Hausmann K, Schlosser D, Schulze A (2014) Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications. Molecules 19:11860–11882

    Article  CAS  PubMed  Google Scholar 

  44. Plieva FM, Kirsebom H, Mattiasson B (2011) Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications. J Sep Sci 34:2164–2172

    CAS  PubMed  Google Scholar 

  45. Plieva FM, De Seta E, Galaev IY, Mattiasson B (2009) Macroporous elastic polyacrylamide monolith columns: processing under compression and scale-up. Sep Purif Technol 65:110–116

    Article  CAS  Google Scholar 

  46. Sahiner N, Seven F (2014) The use of superporous p(AAc (acrylic acid)) cryogels as support for Co and Ni nanoparticle preparation and as reactor in H-2 production from sodium borohydride hydrolysis. Energy 71:170–179

    Article  CAS  Google Scholar 

  47. Hedstrom M, Plieva F, Yu I, Mattiasson GB (2008) Monolithic macroporous albumin/chitosan cryogel structure: a new matrix for enzyme immobilization. Anal Bioanal Chem 390:907–912

    Article  PubMed  Google Scholar 

  48. Arvidsson P, Plieva FM, Lozinsky VI, Galaev IY, Mattiasson B (2003) Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent. J Chromatogr A 986:275–290

    Article  CAS  PubMed  Google Scholar 

  49. Bereli N, Saylan Y, Uzun L, Say R, Denizli A (2011) L-Histidine imprinted supermacroporous cryogels for protein recognition. Sep Purif Technol 82:28–35

    Article  CAS  Google Scholar 

  50. Efremenko E, Votchitseva Y, Plieva F, Galaev I, Mattiasson B (2006) Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography. Appl Microbiol Biotechnol 70:558–563

    Article  CAS  PubMed  Google Scholar 

  51. Andac M, Galaev I, Denizli A (2012) Dye attached poly(hydroxyethyl methacrylate) cryogel for albumin depletion from human serum. J Sep Sci 35:1173–1182

    Article  CAS  PubMed  Google Scholar 

  52. Odabasi M, Baydemir G, Karatas M, Derazshamshir A (2010) Preparation and Characterization of Metal-Chelated Poly(HEMA-MAH) Monolithic Cryogels and Their Use for DNA Adsorption. J Appl Polym Sci 116:1306–1312

    CAS  Google Scholar 

  53. Plieva FM, Galaev IY, Mattiasson B (2007) Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications. J Sep Sci 30:1657–1671

    Article  CAS  PubMed  Google Scholar 

  54. Plieva FM, Galaev IY, Noppe W, Mattiasson B (2008) Cryogel applications in microbiology. Trends Microbiol 16:543–551

    Article  CAS  PubMed  Google Scholar 

  55. Dainiak MB, Allan IU, Savina IN, Cornelio L, James ES, James SL, Mikhalovsky SV, Jungvid H, Galaev IY (2010) Gelatin-fibrinogen cryogel dermal matrices for wound repair: Preparation, optimisation and in vitro study. Biomaterials 31:67–76

    Article  CAS  PubMed  Google Scholar 

  56. Yao K, Yun J, Shen S, Chen F (2007) In-situ graft-polymerization preparation of cation-exchange supermacroporous cryogel with sulfo groups in glass columns. J Chromatogr A 1157:246–251

    Article  CAS  PubMed  Google Scholar 

  57. Bibi NS, Singh NK, Dsouza RN, Aasim M, Fernandez-Lahore M (2013) Synthesis and performance of megaporous immobilized metal-ion affinity cryogels for recombinant protein capture and purification. J Chromatogr A 1272:145–149

    Article  CAS  PubMed  Google Scholar 

  58. Plieva FM, Ekstrom P, Galaev IY, Mattiasson B (2008) Monolithic cryogels with open porous structure and unique double-continuous macroporous networks. Soft Matter 4:2418–2428

    Article  CAS  Google Scholar 

  59. Eichhorn T, Ivanov AE, Dainiak MB, Leistner A, Linsberger I, Jungvid H, Mikhalovsky SV, Weber AVE, Ivanov AB, Dainiak MV, Mikhalovsky S (2013) Macroporous composite cryogels with embedded polystyrene divinylbenzene microparticles for the adsorption of toxic metabolites from blood. J Chem 2013:Article ID 348412

    Article  Google Scholar 

  60. Erzengin M, Unlu N, Odabasi M (2011) A novel adsorbent for protein chromatography: Supermacroporous monolithic cryogel embedded with Cu2 + -attached sporopollenin particles. J Chromatogr A 1218:484–490

    Article  CAS  PubMed  Google Scholar 

  61. Koc I, Baydemir G, Bayram E, Yavuz H, Denizli A (2011) Selective removal of 17 beta-estradiol with particle-embedded cryogel systems. J Hazard Mater 192:1819–1826

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senta Reichelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Reichelt, S. (2015). Introduction to Macroporous Cryogels. In: Reichelt, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 1286. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2447-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2447-9_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2446-2

  • Online ISBN: 978-1-4939-2447-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics