Skip to main content

Groups of Diffeomorphisms and Fluid Motion: Reprise

  • Chapter
Geometry, Mechanics, and Dynamics

Part of the book series: Fields Institute Communications ((FIC,volume 73))

  • 2011 Accesses

Abstract

Following Ebin and Marsden (Ann Math 92(1):102–163, 1970) we provide a concise proof of the well-posedness of the equations of perfect fluid motion. We use a construction which casts the equations as an ordinary differential equation on a non-linear function space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Alternatively we could avoid detailed calculation by noting that \([\mathop{\mathrm{\mathrm{div}}}\nolimits _{\eta },\nabla _{v}]_{\eta }z = -\frac{d} {dt}(\mathop{\mathrm{\mathrm{div}}}\nolimits _{\eta (t)})z\) which is smooth since \(\mathop{\mathrm{\mathrm{div}}}\nolimits _{\eta }\) is smooth in η.

References

  1. Arnol’d, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

    Article  MATH  Google Scholar 

  2. Ebin, D.G.: The manifold of Riemannian metrics. In: Proceedings of Symposia in Pure Mathematics, vol. 15, pp. 11–40. AMS, Providence (1970)

    Google Scholar 

  3. Ebin, D.G.: Geodesics on the symplectomorphism group. Geom. Funct. Anal. 22(1), 202–212 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92(1), 102–163 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  5. Russian translation of Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92(1), 102–163 (1970). Matematika 17(6), 111–146 (1973)

    Google Scholar 

  6. Ebin, D.G., Preston, S.C.: Riemannian geometry on the quantomorphism group. Arnold Math Journal, DOI 10.1007/540598-014-0002-2 (2014)

    Google Scholar 

  7. Marsden, J., Abraham, R.: Hamiltonian mechanics on Lie groups and hydrodynamics. In: Proceedings of Symposia Pure Mathematics, vol. 16, pp. 237–244 (1970)

    Google Scholar 

  8. Marsden, J.E., Weinstein, A.: The hamiltonian structure of the Vlasov equations. Physica D 4, 394–406 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Ebin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ebin, D.G. (2015). Groups of Diffeomorphisms and Fluid Motion: Reprise. In: Chang, D., Holm, D., Patrick, G., Ratiu, T. (eds) Geometry, Mechanics, and Dynamics. Fields Institute Communications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2441-7_6

Download citation

Publish with us

Policies and ethics