Skip to main content
Log in

Geodesics On The Symplectomorphism Group

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let M be a compact manifold with a symplectic form ω and consider the group \({\mathcal{D}_\omega}\) consisting of diffeomorphisms that preserve ω. We introduce a Riemannian metric on M which is compatible with ω and use it to define an L 2-inner product on vector fields on M. Extending by right invariance we get a weak Riemannian metric on \({\mathcal{D}_\omega}\) . We show that this metric has geodesics which come from integral curves of a smooth vector field on the tangent bundle of \({\mathcal{D}_\omega}\) . Then, estimating the growth of such geodesics, we show that they extend globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinieet ses applications a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

    Article  MATH  Google Scholar 

  2. V.I. Arnol’d, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978.

  3. D.G. Ebin, The manifold of Riemannian metrics, Global Analysis (Proc. Sympos. Pure Math. XV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, RI (1970), 11–40.

  4. Ebin D.G.: A concise presentation of the Euler equations of hydrodynamics, Comm. in Part. Diff. Eq. 9, 539–559 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ebin D.G., Marsden J.: Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebin D.G., Misiołek G., Preston S.: Singularities of the exponential map on the volume-preserving diffeomorphism group. Geom. Funct. Anal 16(4), 850–868 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Holm D.D., Tronci C.: The geodesic Vlasov equation and its integrable moment closures, J. Geom. Mech. 2, 181–208 (2009)

    MathSciNet  Google Scholar 

  8. Kato T.: On classical solutions of the two dimensional non-stationary Euler equation, Arch. for Rat. Mech. and Analysis 25, 188–200 (1967)

    MATH  Google Scholar 

  9. D. McDuff, D. Salamon, Introduction to Symplectic Topology Oxford University Press,1998.

  10. C.B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, 1966.

  11. Moser J.: On the volume elements of a manifold, Trans. Am. Math Soc. 120, 286–294 (1965)

    Article  MATH  Google Scholar 

  12. M.E. Taylor, Partial Differential Equations III, Springer Verlag, 1996.

  13. Wolibner W.: Un théorème sur l’existence de movement plan d’un fluide parfait, homogène, incompressible pendent un temps infiniment longue. Math. Z. 37, 698–726 (1933)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Ebin.

Additional information

In memory of Jerry Marsden

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebin, D.G. Geodesics On The Symplectomorphism Group. Geom. Funct. Anal. 22, 202–212 (2012). https://doi.org/10.1007/s00039-012-0150-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0150-2

Keywords and phrases

2010 Mathematics Subject Classification

Navigation