Skip to main content

Production of Cell Surface and Secreted Glycoproteins in Mammalian Cells

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1261))

Abstract

Mammalian protein expression systems are becoming increasingly popular for the production of eukaryotic secreted and cell surface proteins. Here we describe methods to produce recombinant proteins in adherent or suspension human embryonic kidney cell cultures, using transient transfection or stable cell lines. The protocols are easy to scale up and cost-efficient, making them suitable for protein crystallization projects and other applications that require high protein yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng C, Han L, Yap C et al (2006) Progress and problems in the exploration of therapeutic targets. Drug Discov Today 11:412–420

    Article  CAS  PubMed  Google Scholar 

  2. Grudnik P, Bange G, Sinning I (2009) Protein targeting by the signal recognition particle. Biol Chem 390:775–782

    Article  CAS  PubMed  Google Scholar 

  3. Komekado H, Yamamoto H, Chiba T, Kikuchi A (2007) Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells 12:521–534

    Article  CAS  PubMed  Google Scholar 

  4. Braakman I, Bulleid NJ (2011) Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem 80:71–99

    Article  CAS  PubMed  Google Scholar 

  5. Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437

    Article  CAS  PubMed  Google Scholar 

  6. Ellgaard L (2004) Catalysis of disulphide bond formation in the endoplasmic reticulum. Biochem Soc Trans 32:663–667

    Article  CAS  PubMed  Google Scholar 

  7. Contreras-Gomez A, Sanchez-Miron A, Garcia-Camacho F et al (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30:1–18

    Article  CAS  PubMed  Google Scholar 

  8. Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62:1243–1250

    Article  PubMed  Google Scholar 

  9. Hacker DL, Kiseljak D, Rajendra Y et al (2013) Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expr Purif 92:67–76

    Article  CAS  PubMed  Google Scholar 

  10. Chang VT, Crispin M, Aricescu AR et al (2007) Glycoprotein structural genomics: solving the glycosylation problem. Structure 15:267–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chaudhary S, Pak JE, Gruswitz F et al (2012) Overexpressing human membrane proteins in stably transfected and clonal human embryonic kidney 293S cells. Nat Protoc 7:453–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Andrell J, Tate CG (2013) Overexpression of membrane proteins in mammalian cells for structural studies. Mol Membr Biol 30:52–63

    Article  PubMed Central  PubMed  Google Scholar 

  13. Aricescu AR, Owens RJ (2013) Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology. Curr Opin Struct Biol 23:345–356

    Article  CAS  PubMed  Google Scholar 

  14. Standfuss J, Edwards PC, D’Antona A et al (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471:656–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Standfuss J, Xie G, Edwards PC et al (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372:1179–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gruswitz F, Chaudhary S, Ho JD et al (2010) Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci U S A 107:9638–9643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Deupi X, Edwards P, Singhal A et al (2012) Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc Natl Acad Sci U S A 109:119–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhao Y, Bishop B, Clay JE et al (2011) Automation of large scale transient protein expression in mammalian cells. J Struct Biol 175:209–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99:13419–13424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chen CM, Krohn J, Bhattacharya S, Davies B (2011) A comparison of exogenous promoter activity at the ROSA26 locus using a PhiC31 integrase mediated cassette exchange approach in mouse ES cells. PLoS One 6:e23376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Berrow NS, Alderton D, Sainsbury S et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhao Y, Malinauskas T, Harlos K, Jones EY (2014) Structural insights into the inhibition of Wnt signaling by cancer antigen 5T4/Wnt-activated inhibitory factor 1. Structure 22:612–620

    Article  PubMed Central  PubMed  Google Scholar 

  23. Zhao Y, Ren J, Padilla-Parra S et al (2014) LIMP-2, the lysosome-sorting subunit of β-glucocerebrosidase, is targeted by the mannose 6-phosphate receptor. Nat Commun 5:4321

    PubMed Central  PubMed  Google Scholar 

  24. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  25. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257

    Article  CAS  PubMed  Google Scholar 

  26. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  PubMed Central  PubMed  Google Scholar 

  27. Grueninger-Leitch F, D’Arcy A, D’Arcy B, Chene C (1996) Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Sci 5:2617–2622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wong JP, Reboul E, Molday RS, Kast J (2009) A carboxy-terminal affinity tag for the purification and mass spectrometric characterization of integral membrane proteins. J Proteome Res 8:2388–2396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Einhaue A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuguang Zhao , A. Radu Aricescu or E. Yvonne Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Seiradake, E., Zhao, Y., Lu, W., Aricescu, A.R., Jones, E.Y. (2015). Production of Cell Surface and Secreted Glycoproteins in Mammalian Cells. In: Owens, R. (eds) Structural Proteomics. Methods in Molecular Biology, vol 1261. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2230-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2230-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2229-1

  • Online ISBN: 978-1-4939-2230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics