Skip to main content

Recombineering Applications for the Mutational Analysis of Bacterial RNA-Binding Proteins and Their Sites of Action

  • Protocol
  • First Online:
RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

Genetics remains a powerful tool to study structure–function relationships in proteins and RNA. Structural elements important for the biological activity of these molecules can be dissected through the isolation of mutations and analysis of their effects on the mechanism under study. In suitable model organisms, this approach can greatly benefit from the ability to introduce mutations directly in the chromosomal context in ways that do not perturb neighboring sequences. Methods for performing such “markerless” site-directed chromosomal mutagenesis in bacteria have been developed in recent years. One such technique, used routinely in our laboratory, is described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Murphy KC, Campellone KG, Poteete AR (2000) PCR-mediated gene replacement in Escherichia coli. Gene 246:321–330

    Article  CAS  PubMed  Google Scholar 

  3. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97:5978–5983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL (2007) Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol 421:171–199

    Article  CAS  PubMed  Google Scholar 

  5. Thomason LC, Sawitzke JA, Li X, Costantino N, Court DL (2014) Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol 106:1.16.1–1.16.39

    Article  Google Scholar 

  6. Mosberg JA, Lajoie MJ, Church GM (2010) Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186:791–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sawitzke JA, Thomason LC, Bubunenko M, Li X, Costantino N, Court DL (2013) Recombineering: highly efficient in vivo genetic engineering using single-strand oligos. Methods Enzymol 533:157–177

    Article  CAS  PubMed  Google Scholar 

  8. Costantino N, Court DL (2003) Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci U S A 100:15748–15753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Uzzau S, Figueroa-Bossi N, Rubino S, Bossi L (2001) Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci U S A 98:15264–15269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ellermeier CD, Janakiraman A, Slauch JM (2002) Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290:153–161

    Article  CAS  PubMed  Google Scholar 

  11. Karlinsey JE (2007) λ-Red genetic engineering in Salmonella enterica serovar Typhimurium. Methods Enzymol 421:199–209

    Article  CAS  PubMed  Google Scholar 

  12. Li XT, Thomason LC, Sawitzke JA, Costantino N, Court DL (2013) Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. Nucleic Acids Res 41:e204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Roberts MC (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24

    Article  CAS  PubMed  Google Scholar 

  14. Bochner BR, Huang HC, Schieven GL, Ames BN (1980) Positive selection for loss of tetracycline resistance. J Bacteriol 143:926–933

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Bossi L, Schwartz A, Guillemardet B, Boudvillain M, Figueroa-Bossi N (2012) A role for Rho-dependent polarity in gene regulation by a noncoding small RNA. Genes Dev 26:1864–1873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Figueroa-Bossi N, Schwartz A, Guillemardet B, D’Heygere F, Bossi L, Boudvillain M (2014) RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. Genes Dev 28:1239–1251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145:1110–1111

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Yang Q, Figueroa-Bossi N, Bossi L (2014) Translation enhancing ACA motifs and their silencing by a bacterial small regulatory RNA. PLoS Genet 10:e1004026

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Kelly Hughes and Fabienne Chevance for initially encouraging us to develop the protocol described here. This work was supported by French National Research Agency (ANR) ANR-13-BSV3-0005-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nara Figueroa-Bossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Figueroa-Bossi, N., Bossi, L. (2015). Recombineering Applications for the Mutational Analysis of Bacterial RNA-Binding Proteins and Their Sites of Action. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics