Skip to main content

Tips and Tricks to Probe the RNA-Degrading Activities of Hyperthermophilic Archaeal β-CASP Ribonucleases

  • Protocol
  • First Online:
RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

The importance of ribonucleases in posttranscriptional control of gene expression has been established in Eukarya and Bacteria for over a decade. However, this process has been overlooked in Archaea, which are of universal importance to elucidate fundamental biological mechanisms and to study the evolution of life on Earth. Very few ribonucleolytic activities have been reported in Archaea, and RNA metabolism pathways wait to be described. Recently we have identified two major groups of archaeal ribonucleases, aCPSF1 and aRNase J, which are members of the β-CASP metallo-β-lactamase family. Here, we describe in vitro methods to characterize the endo- and exoribonucleolytic activities of hyperthermophilic archaeal β-CASP ribonucleases. The use of various labeled RNA substrates allows defining the specificity of RNA cleavage and the directionality of the exoribonucleolytic trimming activity of the archaeal enzymes which work at high temperature. Elucidating in vitro ribonucleolytic activities is one step toward the understanding of the role of β-CASP ribonucleases in RNA metabolism pathways in archaeal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoecklin G, Muhlemann O (2013) RNA decay mechanisms: specificity through diversity. Biochim Biophys Acta 1829:487–490

    Article  CAS  PubMed  Google Scholar 

  2. Evguenieva-Hackenberg E, Klug G (2009) RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli. Prog Mol Biol Transl Sci 85:275–317

    Article  CAS  PubMed  Google Scholar 

  3. Clouet-d’Orval B, Rinaldi D, Quentin Y et al (2010) Euryarchaeal beta-CASP proteins with homology to bacterial RNase J Have 5′- to 3′-exoribonuclease activity. J Biol Chem 285:17574–17583

    Article  PubMed Central  PubMed  Google Scholar 

  4. Phung DK, Rinaldi D, Langendijk-Genevaux PS et al (2013) Archaeal beta-CASP ribonucleases of the aCPSF1 family are orthologs of the eukaryal CPSF-73 factor. Nucleic Acids Res 41:1091–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hasenohrl D, Konrat R, Blasi U (2011) Identification of an RNase J ortholog in Sulfolobus solfataricus: implications for 5′-to-3′ directional decay and 5′-end protection of mRNA in Crenarchaeota. RNA 17:99–107

    Article  PubMed Central  PubMed  Google Scholar 

  6. Martens B, Amman F, Manoharadas S et al (2013) Alterations of the transcriptome of Sulfolobus acidocaldarius by exoribonuclease aCPSF2. PLoS One 8:e76569

    Article  PubMed Central  PubMed  Google Scholar 

  7. Callebaut I, Moshous D, Mornon JP et al (2002) Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res 30:3592–3601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dominski Z (2007) Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol 42:67–93

    Article  CAS  PubMed  Google Scholar 

  9. Condon C, Gilet L (2011) The metallo-β-lactamase Family of Ribonucleases, vol 26, Nucleic Acids and Molecular Biology. Springer, Berlin Heidelberg, pp 245–267

    Google Scholar 

  10. Dominski Z, Carpousis AJ, Clouet-d’Orval B (2013) Emergence of the beta-CASP ribonucleases: highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation. Biochim Biophys Acta 1829:532–551

    Article  CAS  PubMed  Google Scholar 

  11. Li de la Sierra-Gallay I, Zig L, Jamalli A et al (2008) Structural insights into the dual activity of RNase J. Nat Struct Mol Biol 15:206–212

    Article  PubMed  Google Scholar 

  12. Mandel CR, Kaneko S, Zhang H et al (2006) Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444:953–956

    Article  CAS  PubMed  Google Scholar 

  13. Even S, Pellegrini O, Zig L et al (2005) Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E. Nucleic Acids Res 33:2141–2152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Cohen GN, Barbe V, Flament D et al (2003) An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 47:1495–1512

    Article  CAS  PubMed  Google Scholar 

  15. Evguenieva-Hackenberg E, Wagner S, Klug G (2008) In vivo and in vitro studies of RNA degrading activities in Archaea. Methods Enzymol 447:381–416

    Article  CAS  PubMed  Google Scholar 

  16. Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62

    Article  CAS  PubMed  Google Scholar 

  17. Nolivos S, Carpousis AJ, Clouet-d’Orval B (2005) The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn. Nucleic Acids Res 33:6507–6514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Phok K, Moisan A, Rinaldi D et al (2011) Identification of CRISPR and riboswitch related RNAs among novel non-coding RNAs of the euryarchaeon Pyrococcus abyssi. BMC Genomics 12:312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Petrov A, Wu T, Puglisi EV et al (2013) RNA purification by preparative polyacrylamide gel electrophoresis. Methods Enzymol 530:315–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Centre National de la Recherche Scientique (CNRS) with additional funding from the Agence Nationale de la Recherche (ANR) [BLAN08-1_329396] and from the Université de Toulouse (UPS). D.K.P. is supported by a Ph.D. scholarship from the French “Ministère de l’Éducation nationale, de l’Enseignement supérieur et de la Recherche.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Clouet-d’Orval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Phung, D.K., Clouet-d’Orval, B. (2015). Tips and Tricks to Probe the RNA-Degrading Activities of Hyperthermophilic Archaeal β-CASP Ribonucleases. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics