Skip to main content

Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries

  • Protocol
  • First Online:
Yeast Surface Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2491))

Abstract

Cyclic peptides with engineered protein-binding activity have great potential as therapeutic and diagnostic reagents owing to their favorable properties, including high affinity and selectivity. Cyclic peptide binders have generally been isolated from phage display combinatorial libraries utilizing panning based selections. As an alternative, we have developed a yeast surface display platform to identify and characterize cyclic peptide binders from genetically encoded combinatorial libraries. Through a combination of magnetic selection and fluorescence-activated cell sorting (FACS), high-affinity cyclic peptide binders can be efficiently isolated from yeast display libraries. In this platform, linear peptide precursors are expressed as yeast surface fusions. To achieve cyclization of the linear precursors, the cells are incubated with disuccinimidyl glutarate, which crosslinks amine groups within the displayed linear peptide sequence. Here, we detail protocols for cyclizing linear peptides expressed as yeast surface fusions. We also discuss how to synthesize a yeast display library of linear peptide precursors. Subsequently, we provide suggestions on how to utilize magnetic selections and FACS to isolate cyclic peptide binders for target proteins of interest from a peptide combinatorial library. Lastly, we detail how yeast surface displayed cyclic peptides can be used to obtain efficient estimates of binding affinity, eliminating the need for chemically synthesized peptides when performing mutant characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Horswill AR, Benkovic SJ (2005) Cyclic peptides, a chemical genetics tool for biologists. Cell Cycle 4:552–555

    Article  CAS  PubMed  Google Scholar 

  2. Jaradat DMM (2018) Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids 50:39–68

    Article  CAS  PubMed  Google Scholar 

  3. Zorzi A, Deyle K, Heinis C (2017) Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol 38:24–29

    Article  CAS  PubMed  Google Scholar 

  4. Menegatti S, Naik AD, Carbonell RG (2013) The hidden potential of small synthetic molecules and peptides as affinity ligands for bioseparations. Pharm Bioprocess 1:467–485

    Article  Google Scholar 

  5. Chu W, Prodromou R, Day KN et al (2021) Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 1635:461632

    Article  CAS  PubMed  Google Scholar 

  6. Driggers EM, Hale SP, Lee J et al (2008) The exploration of macrocycles for drug discovery - an underexploited structural class. Nat Rev Drug Discov 7:608–624

    Article  CAS  PubMed  Google Scholar 

  7. Marsault E, Peterson ML (2011) Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J Med Chem 54:1961–2004

    Article  CAS  PubMed  Google Scholar 

  8. Mallinson J, Collins I (2012) Macrocycles in new drug discovery. Future Med Chem 4:1409–1438

    Article  CAS  PubMed  Google Scholar 

  9. Choi JS, Joo SH (2020) Recent trends in cyclic peptides as therapeutic agents and biochemical tools. Biomol Ther 28:18–24

    Article  Google Scholar 

  10. Nevola L, Giralt E (2015) Modulating protein-protein interactions: the potential of peptides. Chem Commun 51:3302–3315

    Article  CAS  Google Scholar 

  11. Zheng Y, Ji S, Czerwinski A et al (2014) FITC-conjugated cyclic RGD peptides as fluorescent probes for staining integrin αvβ3/αvβ5 in tumor tissues. Bioconjug Chem 25:1925–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Subiros-Funosas R, Mendive-Tapia L, Sot J et al (2017) A Trp-BODIPY cyclic peptide for fluorescence labelling of apoptotic bodies. Chem Commun 53:945–948

    Article  CAS  Google Scholar 

  13. Beer AJ, Haubner R, Goebel M et al (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46:1333–1341

    CAS  PubMed  Google Scholar 

  14. Lian W, Jiang B, Qian Z et al (2014) Cell-permeable bicyclic peptide inhibitors against intracellular proteins. J Am Chem Soc 136:9830–9833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  16. Gram H, Schmitz R, Zuber JF et al (1997) Identification of phosphopeptide ligands for the Src-homology 2 (SH2) domain of Grb2 by phage display. Eur J Biochem 246:633–637

    Article  CAS  PubMed  Google Scholar 

  17. Böttger V, Böttger A, Howard SF et al (1996) Identification of novel mdm2 binding peptides by phage display. Oncogene 13:2141–2147

    PubMed  Google Scholar 

  18. Zwick MB, Shen J, Scott JK (1998) Phage-displayed peptide libraries. Curr Opin Biotechnol 9:427–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson DS, Keefe AD, Szostak JW (2001) The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci U S A 98:3750–3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrick JE, Takahashi TT, Ren J et al (2001) Large libraries reveal diverse solutions to an RNA recognition problem. Proc Natl Acad Sci U S A 98:12374–12378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 91:9022–9026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gersuk GM, Corey MJ, Corey E et al (1997) High-affinity peptide ligands to prostate-specific antigen identified by polysome selection. Biochem Biophys Res Commun 232:578–582

    Article  CAS  PubMed  Google Scholar 

  24. Lamla T, Erdmann VA (2003) Searching sequence space for high-affinity binding peptides using ribosome display. J Mol Biol 329:381–388

    Article  CAS  PubMed  Google Scholar 

  25. Kenrick SA, Daugherty PS (2010) Bacterial display enables efficient and quantitative peptide affinity maturation. Protein Eng Des Sel 23:9–17

    Article  CAS  PubMed  Google Scholar 

  26. Bessette PH, Rice JJ, Daugherty PS (2004) Rapid isolation of high-affinity protein binding peptides using bacterial display. Protein Eng Des Sel 17:731–739

    Article  CAS  PubMed  Google Scholar 

  27. Lam KS, Salmon SE, Hersh EM et al (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84

    Article  CAS  PubMed  Google Scholar 

  28. Heinis C, Rutherford T, Freund S et al (2009) Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol 5:502–507

    Article  CAS  PubMed  Google Scholar 

  29. Bosma T, Kuipers A, Bulten E et al (2011) Bacterial display and screening of posttranslationally thioether-stabilized peptides. Appl Environ Microbiol 77:6794–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Urban JH, Moosmeier MA, Aumüller T et al (2017) Phage display and selection of lanthipeptides on the carboxy-terminus of the gene-3 minor coat protein. Nat Commun 8:1–10

    Article  CAS  Google Scholar 

  31. Hetrick KJ, Walker MC, Van Der Donk WA (2018) Development and application of yeast and phage display of diverse lanthipeptides. ACS Cent Sci 4:458–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McLafferty MA, Kent RB, Ladner RC et al (1993) M13 bacteriophage displaying disulfide-constrained microproteins. Gene 128:29–36

    Article  CAS  PubMed  Google Scholar 

  33. O’Neil KT, Hoess RH, Jackson SA et al (1992) Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins Struct Funct Genet 14:509–515

    Article  PubMed  Google Scholar 

  34. Lupold SE, Rodriguez R (2004) Disulfide-constrained peptides that bind to the extracellular portion of the prostate-specific membrane antigen. Mol Cancer Ther 3:597–603

    Article  CAS  PubMed  Google Scholar 

  35. Qian Z, Larochelle JR, Jiang B et al (2014) Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry 53:4034–4046

    Article  CAS  PubMed  Google Scholar 

  36. Qian Z, Dougherty PG, Pei D (2017) Targeting intracellular protein–protein interactions with cell-permeable cyclic peptides. Curr Opin Chem Biol 38:80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qian Z, Liu T, Liu YY et al (2013) Efficient delivery of cyclic peptides into mammalian cells with short sequence motifs. ACS Chem Biol 8:423–431

    Article  CAS  PubMed  Google Scholar 

  38. Gilbert HF (1995) Thiol/disulfide exchange equilibria and disulfidebond stability. Methods Enzymol 251:8–28

    Article  CAS  PubMed  Google Scholar 

  39. Millward SW, Takahashi TT, Roberts RW (2005) A general route for post-translational cyclization of mRNA display libraries. J Am Chem Soc 127:14142–14143

    Article  CAS  PubMed  Google Scholar 

  40. Diderich P, Bertoldo D, Dessen P et al (2016) Phage selection of chemically stabilized α-helical peptide ligands. ACS Chem Biol 11:1422–1427

    Article  CAS  PubMed  Google Scholar 

  41. Millward SW, Fiacco S, Austin RJ et al (2007) Design of cyclic peptides that bind protein surfaces with antibody-like affinity. ACS Chem Biol 2:625–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Menegatti S, Hussain M, Naik AD et al (2013) mRNA display selection and solid-phase synthesis of Fc-binding cyclic peptide affinity ligands. Biotechnol Bioeng 110:857–870

    Article  CAS  PubMed  Google Scholar 

  43. Howell SM, Fiacco SV, Takahashi TT et al (2014) Serum stable natural peptides designed by mRNA display. Sci Rep 4:1–5

    Google Scholar 

  44. Bidlingmaier S, Su Y, Liu B (2015) Combining phage and yeast cell surface antibody display to identify novel cell type-selective internalizing human monoclonal antibodies. Methods Mol Biol 1319:51–63

    Article  PubMed  PubMed Central  Google Scholar 

  45. VanAntwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16:31–37

    Article  CAS  PubMed  Google Scholar 

  46. Van Rosmalen M, Janssen BMG, Hendrikse NM et al (2017) Affinity maturation of a cyclic peptide handle for therapeutic antibodies using deep mutational scanning. J Biol Chem 292:1477–1489

    Article  PubMed  CAS  Google Scholar 

  47. Ishii J, Yoshimoto N, Tatematsu K et al (2012) Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface. PLoS One 7:e37136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jeong M-Y, Rutter J, Chou DH-C (2019) Display of single-chain insulin-like peptides on a yeast surface. Biochemistry 58:182–188

    Article  CAS  PubMed  Google Scholar 

  49. Kintzing JR, Cochran JR (2016) Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Curr Opin Chem Biol 34:143–150

    Article  CAS  PubMed  Google Scholar 

  50. Kimura RH, Levin AM, Cochran FV et al (2009) Engineered cystine knot peptides that bind αvβ3, αvβ5, and α5β1 integrins with low-nanomolar affinity. Proteins Struct Funct Bioinformatics 77:359–369

    Article  CAS  Google Scholar 

  51. Kimura RH, Jones DS, Jiang L et al (2011) Functional mutation of multiple solvent-exposed loops in the Ecballium elaterium trypsin inhibitor-II cystine knot miniprotein. PLoS One 6:e16112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Silverman AP, Levin AM, Lahti JL et al (2009) Engineered cystine-knot peptides that bind αvβ3 integrin with antibody-like affinities. J Mol Biol 385:1064–1075

    Article  CAS  PubMed  Google Scholar 

  53. Kjærulff S, Jensen MR (2005) Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochem Biophys Res Commun 336:974–982

    Article  PubMed  CAS  Google Scholar 

  54. Lee MA, Cheong KH, Shields D et al (2002) Intracellular trafficking and metabolic turnover of yeast prepro-α-factor-SRIF precursors in GH3 cells. Exp Mol Med 34:285–293

    Article  CAS  PubMed  Google Scholar 

  55. Oka C, Tanaka M, Muraki M et al (1999) Human lysozyme secretion increased by alpha-factor pro-sequence in pichi. Biosci Biotechnol Biochem 63:1977–1983

    Article  CAS  PubMed  Google Scholar 

  56. Brake AJ, Merryweather JP, Coit DG et al (1984) α-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 81:4642–4646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Otte S, Barlowe C (2004) Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles. Nat Cell Biol 6:1189–1194

    Article  CAS  PubMed  Google Scholar 

  58. Rakestraw JA, Sazinsky SL, Piatesi A et al (2009) Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103:1192–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Caplan S, Green R, Rocco J et al (1991) Glyosylation and structure of the yeast MFα1 α-factor precursor is important for efficient transport through the secretory pathway. J Bacteriol 173:627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chaudhuri B, Steube K, Stephan C (1992) The pro-region of the yeast prepro-alpha-factor is essential for membrane translocation of human insulin-like growth factor 1 in vivo. Eur J Biochem 206:793–800

    Article  CAS  PubMed  Google Scholar 

  61. Fuller RS, Sterne RE, Thorner J (1988) Enzymes required for yeast prohormone processing. Annu Rev Physiol 50:345–362

    Article  CAS  PubMed  Google Scholar 

  62. Mizuno K, Nakamura T, Ohshima T et al (1989) Characterization of KEX2-encoded endopeptidase from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 159:305–311

    Article  CAS  PubMed  Google Scholar 

  63. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  PubMed  Google Scholar 

  64. Bacon K, Blain A, Burroughs M et al (2020) Isolation of chemically cyclized peptide binders using yeast surface display. ACS Comb Sci 22:519–532

    Article  CAS  PubMed  Google Scholar 

  65. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  PubMed  Google Scholar 

  66. Bacon K, Burroughs M, Blain A et al (2019) Screening yeast display libraries against magnetized yeast cell targets enables efficient isolation of membrane protein binders. ACS Comb Sci 21:817–832

    Article  CAS  PubMed  Google Scholar 

  67. Gera N, Hussain M, Rao BM (2013) Protein selection using yeast surface display. Methods 60:15–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a National Science Foundation Grant (CBET 1511227). KB kindly knowledges support from an NSF Graduate Research Fellowship and a National Institute of Health Molecular Biotechnology Training Fellowship (NIH T32 GM008776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaji M. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bacon, K., Menegatti, S., Rao, B.M. (2022). Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries. In: Traxlmayr, M.W. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 2491. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2285-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2285-8_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2284-1

  • Online ISBN: 978-1-0716-2285-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics