Skip to main content

Engineered Rabies Virus for Transsynaptic Circuit Tracing

  • Protocol
  • First Online:
Neural Tracing Methods

Part of the book series: Neuromethods ((NM,volume 92))

  • 2208 Accesses

Abstract

Transsynaptic tracing using modified rabies virus (RV) is a powerful new technology in neuroscience that allows for visualization of targeted neurons and their synaptic connections. Here, we describe how a genetically engineered version of RV can be used for transsynaptic tracing studies of mammalian neuronal cells by providing protocols for viral isolation, propagation, pseudotyping, and concentration. The resulting genetically modified RV shows neuronal infectivity both in vitro and in vivo. Once the target neuron has been infected, the RV replicates and “jumps” presynaptically to connected neurons to provide a visual map of synaptic connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arenkiel BR, Ehlers MD (2009) Molecular genetics and imaging technologies for circuit-based neuroanatomy. Nature 461(7266):900–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57(5):634–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kuypers HG, Ugolini G (1990) Viruses as transneuronal tracers. Trends Neurosci 13(2):71–75

    Article  CAS  PubMed  Google Scholar 

  4. Ugolini G (1995) Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. J Comp Neurol 356(3):457–480

    Article  CAS  PubMed  Google Scholar 

  5. Aston-Jones G, Card JP (2000) Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J Neurosci Methods 103(1):51–61

    Article  CAS  PubMed  Google Scholar 

  6. Chen S et al (1999) Characterization of transsynaptic tracing with central application of pseudorabies virus. Brain Res 838(1–2):171–183

    Article  CAS  PubMed  Google Scholar 

  7. Voyles BA (1993) The biology of viruses, 1st edn. William C. Brown, Boston, MA, p 386

    Google Scholar 

  8. Lilley CE, Branston RH, Coffin RS (2001) Herpes simplex virus vectors for the nervous system. Curr Gene Ther 1(4):339–358

    Article  CAS  PubMed  Google Scholar 

  9. Enquist LW (2002) Exploiting circuit-specific spread of pseudorabies virus in the central nervous system: insights to pathogenesis and circuit tracers. J Infect Dis 186(Suppl 2):S209–S214

    Article  PubMed  Google Scholar 

  10. Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18(6):617–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wall NR et al (2010) Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc Natl Acad Sci U S A 107(50):21848–21853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wickersham IR et al (2007) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53(5):639–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schnell MJ et al (2010) The cell biology of rabies virus: using stealth to reach the brain. Nat Rev Microbiol 8(1):51–61

    CAS  PubMed  Google Scholar 

  14. Conzelmann KK et al (1990) Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175(2):485–499

    Article  CAS  PubMed  Google Scholar 

  15. Finke S, Conzelmann KK (2005) Replication strategies of rabies virus. Virus Res 111(2):120–131

    Article  CAS  PubMed  Google Scholar 

  16. Albertini AA et al (2008) Structural aspects of rabies virus replication. Cell Mol Life Sci 65(2):282–294

    Article  CAS  PubMed  Google Scholar 

  17. Garcia I et al (2012) Tracing synaptic connectivity onto embryonic stem cell-derived neurons. Stem Cells 30(10):2140–2151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ugolini G (2010) Advances in viral transneuronal tracing. J Neurosci Methods 194(1):2–20

    Article  PubMed  Google Scholar 

  19. Osakada F, Callaway EM (2013) Design and generation of recombinant rabies virus vectors. Nat Protoc 8(8):1583–1601

    Article  PubMed Central  PubMed  Google Scholar 

  20. Scanziani M, Hausser M (2009) Electrophysiology in the age of light. Nature 461(7266):930–939

    Article  CAS  PubMed  Google Scholar 

  21. Miyawaki A (2005) Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48(2):189–199

    Article  CAS  PubMed  Google Scholar 

  22. Tian L et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Armbruster BN et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lechner HA, Lein ES, Callaway EM (2002) A genetic method for selective and quickly reversible silencing of mammalian neurons. J Neurosci 22(13):5287–5290

    CAS  PubMed  Google Scholar 

  25. Magnus CJ et al (2011) Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333(6047):1292–1296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tan EM et al (2006) Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron 51(2):157–170

    Article  CAS  PubMed  Google Scholar 

  27. Choi J, Young JA, Callaway EM (2010) Selective viral vector transduction of ErbB4 expressing cortical interneurons in vivo with a viral receptor-ligand bridge protein. Proc Natl Acad Sci U S A 107(38):16703–16708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Marshel JH et al (2010) Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 67(4):562–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Osakada F et al (2011) New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71(4):617–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sena-Esteves M et al (2004) Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 122(2):131–139

    Article  CAS  PubMed  Google Scholar 

  31. Wickersham IR et al (2007) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4(1):47–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Gray ER et al (2011) Binding of more than one Tva800 molecule is required for ASLV-A entry. Retrovirology 8:96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Garcia I, Kim C, Arenkiel BR (2012) Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons. Front Cell Neurosci 6:59

    Article  PubMed Central  PubMed  Google Scholar 

  34. Garcia I, Kim C, Arenkiel BR (2013) Revealing neuronal circuitry using stem cell-derived neurons. Curr Protoc Stem Cell Biol Chapter 2:Unit 2D 15

    Google Scholar 

  35. Maguire AM et al (2008) Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 358(21):2240–2248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Takatoh J et al (2013) New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking. Neuron 77(2):346–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin R. Arenkiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Selever, J., Arenkiel, B.R. (2015). Engineered Rabies Virus for Transsynaptic Circuit Tracing. In: Arenkiel, B. (eds) Neural Tracing Methods. Neuromethods, vol 92. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1963-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1963-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1962-8

  • Online ISBN: 978-1-4939-1963-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics