Skip to main content

Dipeptide-Bound Glutamine and the Intestinal Microcirculation in Sepsis

  • Chapter
  • First Online:
Glutamine in Clinical Nutrition

Abstract

Glutamine is made from glutamine and ammonia through a biochemical reaction, catalyzed by enzyme glutamine synthetase [1]. In fact, GLN is crucial in the regulation of amino acid homeostasis. GLN provides the amide-group required for the synthesis of metabolites, such as the amino-sugars, purines, pyrimidines and nucleotides. In addition, Gln is an important nutrient for rapidly proliferating cells, including enterocytes and lymphocytes [2]. The relevance of GLN is also related to enhancing the availability of these metabolites, e.g. the synthesis of the antioxidant glutathione, and the synthesis of citrulline and arginine [3], and the resultant production of the vasodilator nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovacevic Z, McGivan JD. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev. 1983;63(2):547–605.

    CAS  PubMed  Google Scholar 

  2. Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid? Nutr Rev. 1990;48(8):297–309.

    Article  CAS  PubMed  Google Scholar 

  3. Ligthart-Melis GC, Van de Poll MCG, Boelens PG, Dejong CHC, Deutz NEP, Van Leeuwen PA. Glutamine is an important precursor for de novo synthesis of arginine in humans. Am J Clin Nutr. 2008;87(5):1282–9.

    CAS  PubMed  Google Scholar 

  4. Askanazi J, Carpentier YA, Michelsen CB, et al. Muscle and plasma amino acids following injury. Influence of intercurrent infection. Ann Surg. 1980;192(1):78–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Souba WW, Herskowitz K, Klimberg VS, et al. The effects of sepsis and endotoxemia on gut glutamine metabolism. Ann Surg. 1990;211(5):543–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Austgen TR, Chen MK, Dudrick PS, Copeland EM, Souba WW. Cytokine regulation of intestinal glutamine utilization. Am J Surg. 1992;163(1):174–9. discussion 179–80.

    Article  CAS  PubMed  Google Scholar 

  7. Lyons J, Rauh-Pfeiffer A, Ming-Yu Y, et al. Cysteine metabolism and whole blood glutathione synthesis in septic pediatric patients. Crit Care Med. 2001;29(4):870–7.

    Article  CAS  PubMed  Google Scholar 

  8. Biolo G, Antonione R, De Cicco M. Glutathione metabolism in sepsis. Crit Care Med. 2007;35(9 Suppl):S591–5.

    Article  CAS  PubMed  Google Scholar 

  9. Furst P, Stehle P. What are the essential elements needed for the determination of amino acid requirements in humans? Am Soc Nutr Sci. 2004;134:1558S–65.

    Google Scholar 

  10. Wernerman J. Clinical use of glutamine supplementation. J Nutr. 2008;138(10):2040S–4.

    CAS  PubMed  Google Scholar 

  11. Cruzat VF, Tirapegui J. Effects of oral supplementation with glutamine and alanyl-glutamine on glutamine, glutamate, and glutathione status in trained rats and subjected to long-duration exercise. Nutrition. 2009;25(4):428–35.

    Article  CAS  PubMed  Google Scholar 

  12. Singer P, Berger MM, Van den Berghe G, et al. ESPEN Guidelines on Parenteral Nutrition: intensive care. Clin Nutr. 2009;28(4):387–400.

    Article  PubMed  Google Scholar 

  13. De-Souza DA, Greene LJ. Intestinal permeability and systemic infections in critically ill patients: effect of glutamine. Crit Care Med. 2005;33(5):1125–35.

    Article  PubMed  Google Scholar 

  14. Wischmeyer PE. Glutamine: role in gut protection in critical illness. Curr Opin Clin Nutr Meta Care. 2006;9(5): 607–12.

    Article  CAS  Google Scholar 

  15. Hammarqvist F, Wernerman J, Von der Decken A, Vinnars E. Alanyl-glutamine counteracts the depletion of free glutamine and the postoperative decline in protein synthesis in skeletal muscle. Ann Surg. 1990;212(5):637–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Grau T, Bonet A, Miñambres E, et al. The effect of L-alanyl-L-glutamine dipeptide supplemented total parenteral nutrition on infectious morbidity and insulin sensitivity in critically ill patients. Crit Care Med. 2011;39(6): 1263–8.

    Article  CAS  PubMed  Google Scholar 

  17. Déchelotte P, Hasselmann M, Cynober L, et al. L-alanyl-L-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: the French controlled, randomized, double-blind, multicenter study. Crit Care Med. 2006;34(3):598–604.

    Article  PubMed  Google Scholar 

  18. Vincent J-L, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302(21):2323–9.

    Article  CAS  PubMed  Google Scholar 

  19. Xu D, Qi L, Guillory D, Cruz N, Berg R, Deitch EA. Mechanisms of endotoxin-induced intestinal injury in a hyperdynamic model of sepsis. J Trauma. 1993;34(5):676–83.

    Article  CAS  PubMed  Google Scholar 

  20. Klemm K, Moody FG. Regional intestinal blood flow and nitric oxide synthase inhibition during sepsis in the rat. Ann Surg. 1998;227(1):126–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lush CW, Kvietys PR. Microvascular dysfunction in sepsis. Microcirculation. 2000;7(2):83–101.

    Article  CAS  PubMed  Google Scholar 

  22. Dyson A, Cone S, Singer M, Ackland GL. Microvascular and macrovascular flow are uncoupled in early polymicrobial sepsis. Br J Anaesth. 2012;108(6):973–8.

    Article  CAS  PubMed  Google Scholar 

  23. Spanos A, Jhanji S, Vivian-Smith A, Harris T, Pearse RM. Early microvascular changes in sepsis and severe sepsis. Shock. 2010;33(4):387–91.

    Article  PubMed  Google Scholar 

  24. Deban L, Correale C, Vetrano S, Malesci A, Danese S. Multiple pathogenic roles of microvasculature in inflammatory bowel disease: a Jack of all trades. Am J Pathol. 2008;172(6):1457–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hatoum OA, Miura H, Binion DG. The vascular contribution in the pathogenesis of inflammatory bowel disease. Am J Physiol Heart Circ Physiol. 2003;285(5):H1791–6.

    CAS  PubMed  Google Scholar 

  26. Carr ND, Pullan BR, Schofield PF. Microvascular studies in non-specific inflammatory bowel disease. Gut. 1986; 27(5):542–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Goddard CM, Allard MF, Hogg JC, Herbertson MJ, Walley KR. Prolonged leukocyte transit time in coronary microcirculation of endotoxemic pigs. Am J Physiol. 1995;269(4 Pt 2):H1389–97.

    CAS  PubMed  Google Scholar 

  28. Goddard CM, Poon BY, Klut ME, et al. Leukocyte activation does not mediate myocardial leukocyte retention during endotoxemia in rabbits. Am J Physiol Heart Circ Physiol. 1998;275:H1548–57.

    CAS  Google Scholar 

  29. MacFie J. Current status of bacterial translocation as a cause of surgical sepsis. Br Med Bull. 2004;71:1–11.

    Article  PubMed  Google Scholar 

  30. Gatt M, Reddy BS, MacFie J. Review article: bacterial translocation in the critically ill–evidence and methods of prevention. Aliment Pharmacol Ther. 2007;25(7):741–57.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Shaw SK, Ma S, Yang L, Francis W, Parkos CA. Regulation of leukocyte transmigration: cell surface. J Immunol. 2004;172:7–13.

    Article  CAS  PubMed  Google Scholar 

  32. Ravnic DJ, Konerding MA, Tsuda A, et al. Structural adaptations in the murine colon microcirculation associated with hapten-induced inflammation. Gut. 2007;56(4):518–23.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Foitzik T, Kruschewski M, Kroesen A, Buhr HJ. Does microcirculation play a role in the pathogenesis of inflammatory bowel diseases? Answers from intravital microscopic studies in animal models. Int J Colorectal Dis. 1999; 14(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  34. Farkas S, Herfarth H, Rössle M, et al. Quantification of mucosal leucocyte endothelial cell interaction by in vivo fluorescence microscopy in experimental colitis in mice. Clin Exp Immunol. 2001;126(2):250–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Teramoto K, Miura S, Tsuzuki Y, et al. Increased lymphocyte trafficking to colonic microvessels is dependent on MAdCAM-1 and C-C chemokine mLARC/CCL20 in DSS-induced mice colitis. Clin Exp Immunol. 2005; 139:421–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lustig MK, Bac VH, Pavlovic D, et al. Colon ascendens stent peritonitis – a model of sepsis adopted to the rat: physiological, microcirculatory and laboratory changes. Shock. 2007;28(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  37. Yao Y, Yu Y, Wu Y, Shi Z, Sheng Z. The role of gut as a cytokine-generating organ in remote organ dysfunction after intestinal ischemia and reperfusion. Chin Med J. 1998;111(6):514–8.

    CAS  PubMed  Google Scholar 

  38. Meakins JL, Marshall JC. The gastrointestinal tract: the “motor” of MOF. Arch Surg. 1986;121(2):197–201.

    Google Scholar 

  39. Adams JM, Hauser CJ, Adams CA, Xu DZ, Livingston DH, Deitch EA. Entry of gut lymph into the circulation primes rat neutrophil respiratory burst in hemorrhagic shock. Crit Care Med. 2001;29(11):2194–8.

    Article  CAS  PubMed  Google Scholar 

  40. Gong J-P, Wu C-X, Liu C-A, et al. Intestinal damage mediated by Kupffer cells in rats with endotoxemia. World J Gastroenterol. 2002;8(5):923–7.

    CAS  PubMed  Google Scholar 

  41. Schmidt H, Martindale R. The gastrointestinal tract in critical illness. Curr Opin Clin Nutr Meta Care. 2001; 4(6):547–51.

    Article  CAS  Google Scholar 

  42. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9 Suppl 4:S13–9.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Stechmiller J, Treloar D, Allen N. Gut dysfunction in critically ill patients: a review of the literature. Am J Crit Care. 1997;6(3):204–9.

    CAS  PubMed  Google Scholar 

  44. Lehmann C, Pavlovic D, Zhou J, et al. Intravenous free and dipeptide-bound glutamine maintains intestinal microcirculation in experimental endotoxemia. Nutrition. 2012;28(5):588–93.

    Article  CAS  PubMed  Google Scholar 

  45. Spronk PE, Zandstra DF, Ince C. Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care. 2004;8(6):462–8.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Wusteman M, Tate H, Weaver L, Austin S, Neale G, Elia M. The effect of enteral glutamine deprivation and supplementation on the structure of rat small-intestine mucosa during a systemic injury response. JPEN. 1995;19(1):22–7.

    Article  CAS  Google Scholar 

  47. Belmonte L, Coëffier M, Le Pessot F, et al. Effects of glutamine supplementation on gut barrier, glutathione content and acute phase response in malnourished rats during inflammatory shock. World J Gastroenterol. 2007;13(20): 2833–40.

    CAS  PubMed  Google Scholar 

  48. Sukhotnik I, Agam M, Shamir R, et al. Oral glutamine prevents gut mucosal injury and improves mucosal recovery following lipopolysaccharide endotoxemia in a rat. J Surg Res. 2007;143(2):379–84.

    Article  CAS  PubMed  Google Scholar 

  49. Wischmeye PE, Kahana M, Wolfson R, Ren H, Musch M, Chang EB. Glutamine reduces cytokine release, organ damage, and mortality in a rat model of endotoxemia. Shock. 2001;16(5):398–402.

    Article  Google Scholar 

  50. Foitzik T, Kruschewski M, Kroesen AJ, Hotz HG, Eibl G, Buhr HJ. Does glutamine reduce bacterial translocation? A study in two animal models with impaired gut barrier. Int J Colorectal Dis. 1999;14(3):143–9.

    Article  CAS  PubMed  Google Scholar 

  51. Scheibe R, Schade M, Gründling M, et al. Glutamine and alanyl-glutamine dipeptide reduce mesenteric plasma extravasation, leukocyte adhesion and tumor necrosis factor-alpha (TNF-α) release during experimental endotoxemia. J Physiol Pharmacol. 2009;60 Suppl 8:19–24.

    PubMed  Google Scholar 

  52. Arndt H, Kullmann F, Reuss F, Scholmerich J, Palitzsch KDD, ReuB F. Glutamine attenuates leukocyte-endothelial cell adhesion in indomethacin-induced intestinal inflammation in the rat. J Parenter Enteral Nutr. 1999;23(1):12–8.

    Article  CAS  Google Scholar 

  53. Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001;2(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  54. Hou Y-C, Hsu C-S, Yeh C-L, Chiu W-C, Pai M-H, Yeh S-L. Effects of glutamine on adhesion molecule expression and leukocyte transmigration in endothelial cells exposed to arsenic. J Nutr Biochem. 2005;16(11):700–4.

    Article  CAS  PubMed  Google Scholar 

  55. Yeh CL, Hsu CS, Chen SC, Pai MH, Yeh SL. Effect of glutamine on cellular adhesion molecule expression and leukocyte transmigration in endothelial cells stimulated by plasma or peritoneal drain fluid from a surgical patient. Shock. 2006;25(3):236–40.

    Article  CAS  PubMed  Google Scholar 

  56. Yeh C-L, Hsu C-S, Yeh S-L, Lin M-T, Chen W-J. Dietary glutamine supplementation reduces cellular adhesion molecule expression and tissue myeloperoxidase activity in mice with gut-derived sepsis. Nutrition. 2006;22(4): 408–13.

    Article  CAS  PubMed  Google Scholar 

  57. Fillmann H, Kretzmann NA, San-Miguel B, et al. Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor kappaB pathway in an experimental model of colitis in the rat. Toxicology. 2007;236(3):217–26.

    Article  CAS  PubMed  Google Scholar 

  58. Singleton KD, Beckey VE, Wischmeyer PE. Glutamine prevents activation of NF-kappaB and stress kinase pathways, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome following sepsis. Shock. 2005;24(6):583–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lai YN, Yeh SL, Lin MT, Shang HF, Yeh CL, Chen WJ. Glutamine supplementation enhances mucosal immunity in rats with Gut-Derived sepsis. Nutrition. 2004;20(3):286–91.

    Article  CAS  PubMed  Google Scholar 

  60. Wasa M, Soh H, Shimizu Y, Fukuzawa M. Glutamine stimulates amino acid transport during ischemia-reperfusion in human intestinal epithelial cells. J Surg Res. 2005;123(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  61. Matés JM, Pérez-Gómez C, Núñez de Castro I, Asenjo M, Márquez J. Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol. 2002;34(5):439–58.

    Article  PubMed  Google Scholar 

  62. Barth A, Bauer R, Gedrange T, Walter B, Klinger W, Zwiener U. Influence of hypoxia and hypoxia/hypercapnia upon brain and blood peroxidative and glutathione status in normal weight and growth-restricted newborn piglets. Exp Toxicol Pathol. 1998;50(4–6):402–10.

    Article  CAS  PubMed  Google Scholar 

  63. Barth A, Bauer R, Gedrange T, Walter B, Linss C, Klinger W. Influence of hypoxia and hyperthermia upon peroxidative and glutathione status in growth-restricted newborn piglets. Exp Toxicol Pathol. 1998;50(1):31–3.

    Article  CAS  PubMed  Google Scholar 

  64. Blackwell TS, Blackwell TR, Holden EP, Christman BW, Christman JW. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. J Immunol. 1996;157(4):1630–7.

    CAS  PubMed  Google Scholar 

  65. Roth E, Oehler R, Manhart N, et al. Regulative potential of glutamine–relation to glutathione metabolism. Nutrition. 2002;18(3):217–21.

    Article  CAS  PubMed  Google Scholar 

  66. Basivireddy J, Jacob M, Balasubramanian KA. Oral glutamine attenuates indomethacin-induced small intestinal damage. Clin Sci. 2004;107(3):281–9.

    Article  CAS  PubMed  Google Scholar 

  67. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 2003;54(4):469–87.

    CAS  PubMed  Google Scholar 

  68. Ban K, Kozar RA. Enteral glutamine: a novel mediator of PPARγ in the postischemic gut. J Leuk Biol. 2008; 84(3):595–9.

    Article  CAS  Google Scholar 

  69. Sikora A, Girzesiuk E. Heat shock response in gastrointestinal tract. J Physiol Pharmacol. 2007;58 Suppl 3:43–62.

    PubMed  Google Scholar 

  70. Wischmeyer PE, Kahana M, Wolfson R, Ren H, Musch MM, Chang EB. Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J Appl Physiol. 2001;90(6):2403–10.

    CAS  PubMed  Google Scholar 

  71. Liang M, Wang X, Yuan Y, Zhou Q, Tong C, Jiang W. Different effect of glutamine on macrophage tumor necrosis factor-alpha release and heat shock protein 72 expression in vitro and in vivo. Acta Biochim Biophys Sin. 2009; 41(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  72. Singleton KD, Wischmeyer PE. Glutamine’s protection against sepsis and lung injury is dependent on heat shock protein 70 expression. Am J Physiol Reg Integ Compar Physiol. 2007;292(5):R1839–45.

    Article  CAS  Google Scholar 

  73. Hayashi Y. Preoperative glutamine administration induces heat-shock protein 70 expression and attenuates cardiopulmonary bypass-induced inflammatory response by regulating nitric oxide synthase activity. Circulation. 2002; 106(20):2601–7.

    Article  CAS  PubMed  Google Scholar 

  74. Wischmeyer PE, Musch MW, Madonna MB, Thisted R, Chang EB. Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol. 1997;272(4 Pt 1):G879–84.

    CAS  PubMed  Google Scholar 

  75. Hamiel CR, Pinto S, Hau A, Wischmeyer PE. Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity. Am J Physiol Cell Physiol. 2009;297(6):C1509–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Wischmeyer PE, Riehm J, Singleton KD, et al. Glutamine attenuates tumor necrosis factor-alpha release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition. 2003;19(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  77. Peng Z-Y, Hamiel CR, Banerjee A, Wischmeyer PE, Friese RS, Wischmeyer P. Glutamine attenuation of cell death and inducible nitric oxide synthase expression following inflammatory cytokine-induced injury is dependent on heat shock factor-1 expression. JPEN. 2006;30(5):400–7.

    Article  CAS  Google Scholar 

  78. Xie Y, Chen C, Stevenson MA, Auron PE, Calderwood SK. Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem. 2002;277(14): 11802–10.

    Article  CAS  PubMed  Google Scholar 

  79. Peng Z, Ban K, Sen A, et al. Syndecan 1 plays a novel role in enteral glutamine’s gut-protective effects of the postischemic gut. Shock. 2012;38(1):57–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Berg A, Rooyackers O, Norberg A, Wernerman J. Elimination kinetics of L-alanyl-L-glutamine in ICU patients. Amino Acids. 2005;29(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  81. Berg A, Norberg A, Martling CR, Gamrin L, Rooyackers O, Wernerman J. Glutamine kinetics during intravenous glutamine supplementation in ICU patients on continuous renal replacement therapy. Intensive Care Med. 2007; 33(4):660–6.

    Article  CAS  PubMed  Google Scholar 

  82. Nose K, Wasa M, Okada A. Gut glutamine metabolism at different stages of sepsis in rats. Surg Today. 2002;32(8): 695–700.

    Article  CAS  PubMed  Google Scholar 

  83. Ziegler TR, Bazargan N, Leader LM, Martindale RG. Glutamine and the gastrointestinal tract. Curr Opin Clin Nutr Metab Care. 2000;3(5):355–62.

    Article  CAS  PubMed  Google Scholar 

  84. Wernerman J, Hammarqvist F. Glutamine: a necessary nutrient for the intensive care patient. Int J Colorectal Dis. 1999;14(3):137–42.

    Article  CAS  PubMed  Google Scholar 

  85. Thomson AB, Keelan M, Thiesen A, Clandinin MT, Ropeleski M, Wild GE. Small bowel review: diseases of the small intestine. Dig Dis Sci. 2001;46(12):2555–66.

    Article  CAS  PubMed  Google Scholar 

  86. Miller AL. Therapeutic considerations of L-glutamine: a review of the literature. Altern Med Rev. 1999;4(4): 239–48.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lehmann M.D., Ph.D., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Al-Banna, N.A., Lehmann, C. (2015). Dipeptide-Bound Glutamine and the Intestinal Microcirculation in Sepsis. In: Rajendram, R., Preedy, V., Patel, V. (eds) Glutamine in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1932-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1932-1_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1931-4

  • Online ISBN: 978-1-4939-1932-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics