Skip to main content

Regulatory RNA Design Through Evolutionary Computation and Strand Displacement

  • Protocol
  • First Online:
Computational Methods in Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1244))

Abstract

The discovery and study of a vast number of regulatory RNAs in all kingdoms of life over the past decades has allowed the design of new synthetic RNAs that can regulate gene expression in vivo. Riboregulators, in particular, have been used to activate or repress gene expression. However, to accelerate and scale up the design process, synthetic biologists require computer-assisted design tools, without which riboregulator engineering will remain a case-by-case design process requiring expert attention. Recently, the design of RNA circuits by evolutionary computation and adapting strand displacement techniques from nanotechnology has proven to be suited to the automated generation of DNA sequences implementing regulatory RNA systems in bacteria. Herein, we present our method to carry out such evolutionary design and how to use it to create various types of riboregulators, allowing the systematic de novo design of genetic control systems in synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nat Biotechnol 24:545–554

    Article  CAS  PubMed  Google Scholar 

  3. Liang JC, Bloom RJ, Smolke CD (2011) Engineering biological systems with synthetic RNA molecules. Mol Cell 43:915–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847

    Article  CAS  PubMed  Google Scholar 

  5. Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23:337–343

    Article  CAS  PubMed  Google Scholar 

  6. Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP (2011) Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc Natl Acad Sci U S A 108:8617–8622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Rodrigo G, Landrain TE, Jaramillo A (2012) De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc Natl Acad Sci U S A 109:15271–15276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mutalik VK, Qi L, Guimaraes JC, Lucks JB, Arkin AP (2012) Rationally designed families of orthogonal RNA regulators of translation. Nat Chem Biol 8:447–454

    Article  CAS  PubMed  Google Scholar 

  9. Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174

    Article  CAS  PubMed  Google Scholar 

  10. Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104:14283–14288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wieland M, Hartig JS (2008) An improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed 47:2604–2607

    Article  CAS  Google Scholar 

  12. Carothers JM, Goler JA, Juminaga D, Keasling JD (2011) Model-driven engineering of RNA devices to quantitatively program gene expression. Science 334:1716–1719

    Article  CAS  PubMed  Google Scholar 

  13. Klauser B, Hartig JS (2013) An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res 41:5542–5552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Qi L, Haurwitz RE, Shao W, Doudna JA, Arkin AP (2012) RNA processing enables predictable programming of gene expression. Nat Biotechnol 30:1002–1006

    Article  CAS  PubMed  Google Scholar 

  15. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. doi:10.1093/nar/gkt520

    PubMed Central  PubMed  Google Scholar 

  17. McCaskill JM (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1109–1119

    Article  Google Scholar 

  18. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  19. Rodrigo G, Carrera J, Landrain TE, Jaramillo A (2012) Perspectives on the automatic design of regulatory systems for synthetic biology. FEBS Lett 586:2037–2042

    Article  CAS  PubMed  Google Scholar 

  20. Foster JA (2001) Evolutionary computation. Nat Rev Genet 2:428–436

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigo G, Landrain TE, Majer E, Daròs JA, Jaramillo A (2013) Full design automation of multi-state RNA devices to program gene expression using energy-based optimization. PLoS Comput Biol 9:e1003172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    Article  CAS  Google Scholar 

  23. Dirks RM, Bois JS, Schaeffer JM, Winfree E, Pierce NA (2007) Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev 49:65–88

    Article  Google Scholar 

  24. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Registry of Standard Biological Parts, MIT. http://parts.igem.org

  26. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  CAS  PubMed  Google Scholar 

  27. Larson MH, Greenleaf WJ, Landick R, Block SM (2008) Applied force reveals mechanistic and energetic details of transcription termination. Cell 132:971–982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai QA, Thimmaiah T, Carothers JM, Arkin AP, Endy D (2013) Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res 41:5139–5148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chen YJ, Liu P, Nielsen AA, Brophy JA, Clancy K, Peterson T, Voigt CA (2013) Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10:659–664

    Article  CAS  PubMed  Google Scholar 

  30. D’Aubenton Carafa Y, Brody E, Thermes C (1990) Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J Mol Biol 216:835–858

    Article  PubMed  Google Scholar 

  31. Dunlop MJ, Cox RS 3rd, Levine JH, Murray RM, Elowitz MB (2008) Regulatory activity revealed by dynamic correlations in gene expression noise. Nat Genet 40:1493–1498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hussein R, Lim HN (2011) Disruption of small RNA signaling caused by competition for Hfq. Proc Natl Acad Sci U S A 108:1110–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed Central  PubMed  Google Scholar 

  34. Takiff HE, Chen SM, Court DL (1989) Genetic analysis of the rnc operon of Escherichia coli. J Bacteriol 171:2581–2590

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  PubMed  Google Scholar 

  36. Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7:291–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Qi L, Lucks JB, Liu CC, Mutalik VK, Arkin AP (2012) Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res 40:5775–5786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Romero D, Martínez-Salazar J, Ortiz E, Rodríguez C, Valencia-Morales E (1999) Repeated sequences in bacterial chromosomes and plasmids: a glimpse from sequenced genomes. Res Microbiol 150:735–743

    Article  CAS  PubMed  Google Scholar 

  41. Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139:1366–1375

    Article  PubMed Central  PubMed  Google Scholar 

  42. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work supported by the FP7-ICT-043338 (BACTOCOM) grant (to A.J.). We thank Anna Młynarczyk for critical reading of the manuscript. W.R. is supported by a DGA graduate fellowship, T.E.L by an AXA research fund Ph.D. fellowship, and G.R. by an EMBO long-term fellowship co-funded by Marie Curie actions (ALTF-1177-2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guillermo Rodrigo or Alfonso Jaramillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rostain, W., Landrain, T.E., Rodrigo, G., Jaramillo, A. (2015). Regulatory RNA Design Through Evolutionary Computation and Strand Displacement. In: Marchisio, M. (eds) Computational Methods in Synthetic Biology. Methods in Molecular Biology, vol 1244. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1878-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1878-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1877-5

  • Online ISBN: 978-1-4939-1878-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics