Skip to main content

Epigenetic Therapy for Colorectal Cancer

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Aberrations in epigenome that include alterations in DNA methylation, histone acetylation, and miRNA (microRNA) expression may govern the progression of colorectal cancer (CRC). These epigenetic changes affect every phase of tumor development from initiation to metastasis. Since epigenetic alterations can be reversed by DNA demethylating and histone acetylating agents, current status of the implication of epigenetic therapy in CRC is discussed in this article. Interestingly, DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) have shown promising results in controlling cancer progression. The information provided here might be useful in developing personalized medicine approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Migheli F, Migliore L (2012) Epigenetics of colorectal cancer. Clin Genet 8:312–318

    Article  Google Scholar 

  2. van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG (2011) Colorectal cancer epigenetics: complex simplicity. J Clin Oncol 29:1382–1391

    Article  PubMed  Google Scholar 

  3. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    Article  CAS  PubMed  Google Scholar 

  4. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  CAS  PubMed  Google Scholar 

  5. Roy S, Majumdar AP (2012) Cancer stem cells in colorectal cancer: genetic and epigenetic changes. J. Stem Cell Res. Ther. Suppl 7(6): 10342

    Google Scholar 

  6. You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22:9–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  8. Nebbioso A, Carafa V, Benedetti R, Altucci L (2012) Trials with ‘epigenetic’ drugs: an update. Mol Oncol 6:657–682

    Article  CAS  PubMed  Google Scholar 

  9. Tost J (2010) DNAmethylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol 44:71–81

    Article  CAS  PubMed  Google Scholar 

  10. Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10:805–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird A, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pradhan S, Esteve PO (2003) Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin Immunol 109:6–16

    Article  CAS  PubMed  Google Scholar 

  14. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  15. Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539

    Article  PubMed  Google Scholar 

  16. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M (2008) Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455:818–821

    Article  CAS  PubMed  Google Scholar 

  18. Bostick M, Kim JK, Estève PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    Article  CAS  PubMed  Google Scholar 

  19. Jeong S, Liang G, Sharma S, Lin JC, Choi SH, Han H, Yoo CB, Egger G, Yang AS, Jones PA (2009) Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA. Mol Cell Biol 29:5366–5376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  21. Schnekenburger M, Diederich M (2012) Epigenetics offer new horizons for colorectal cancer prevention. Curr Colorectal Cancer Rep 8:66–81

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hammoud SS, Cairns BR, Jones DA (2013) Epigenetic regulation of colon cancer and intestinal stem cells. Curr Opin Cell Biol 25:177–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Pogribny IP, Beland FA (2009) DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci 66:2249–2261

    Article  CAS  PubMed  Google Scholar 

  24. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  CAS  PubMed  Google Scholar 

  25. Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105:13556–13561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  CAS  PubMed  Google Scholar 

  27. Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z, Riggs AD, Pfeifer GP (2008) High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A 105:252–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E, Fernandez H, Tallman MS, Greally JM, Carraway H, Licht JD, Gore SD, Melnick A (2009) MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 114:3448–3458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Szyf M (2003) Targeting DNA methylation in cancer. Ageing Res Rev 2:299–328

    Article  CAS  PubMed  Google Scholar 

  30. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    Article  CAS  PubMed  Google Scholar 

  31. Zhu J, Yao X (2009) Use of DNA methylation for cancer detection: promises and challenges. Int J Biochem Cell Biol 41:147–154

    Article  CAS  PubMed  Google Scholar 

  32. Shah R, Smith P, Purdie C, Quinlan P, Baker L, Aman P, Thompson AM, Crook T (2009) The prolyl 3-hydroxylases P3H2 and P3H3 are novel targets for epigenetic silencing in breast cancer. Br J Cancer 100:1687–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mayor R, Casadome L, Azuara D, Moreno V, Clark SJ, Capella G, Peinado MA (2009) Long-range epigenetic silencing at 2q14.2 affects most human colorectal cancers and may have application as a non-invasive biomarker of disease. Br J Cancer 100:1534–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grützmann R, Pilarsky C, Habermann JK, Fleshner PR, Oubre BM, Day R, Sledziewski AZ, Lofton-Day C (2009) Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55:1337–1346

    Article  CAS  PubMed  Google Scholar 

  35. Szyf M, Pakneshan P, Rabbani SA (2004) DNA methylation and breast cancer. Biochem Pharmacol 68:1187–1197

    Article  CAS  PubMed  Google Scholar 

  36. Szyf M (2005) DNA methylation and demethylation as targets for anticancer therapy. Biochemistry 70:533–549

    CAS  PubMed  Google Scholar 

  37. Esteller M (2003) Relevance of DNA methylation in the management of cancer. Lancet Oncol 4:351–358

    Article  CAS  PubMed  Google Scholar 

  38. Szyf M (2009) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263

    Article  CAS  PubMed  Google Scholar 

  39. Brueckner B, Kuck D, Lyko F (2007) DNA methyltransferase inhibitors for cancer therapy. Cancer J 13:17–22

    Article  CAS  PubMed  Google Scholar 

  40. Goffin J, Eisenhauer E (2002) DNA methyltransferase inhibitorsstate of the art. Ann Oncol 13:1699–1716

    Article  CAS  PubMed  Google Scholar 

  41. De Abreu R, Lambooy L, Stet E, Vogels-Mentink T, van den Heuvel L (1995) Thiopurine induced disturbance of DNA methylation in human malignant cells. Adv Enzyme Regul 35:251–263

    Article  PubMed  Google Scholar 

  42. Balch C, Montgomery JS, Paik H-I, Kim S, Huang TH-M, Nephew KP (2005) New anti-cancer strategies: epigenetic therapies and biomarkers. Front Biosci 10:1887–1931

    Google Scholar 

  43. Esteller M (2006) CpG island methylation and histone modifications: biology and clinical significance. Ernst Schering Res Found Workshop 57:115–126

    Article  CAS  PubMed  Google Scholar 

  44. Yoo CB, Cheng JC, Jones PA (2004) Zebularine: a new drug for epigenetic therapy. Biochem Soc Trans 32:910–912

    Article  CAS  PubMed  Google Scholar 

  45. Rao SP, Rechsteiner MP, Berger C, Sigrist JA, Nadal D, Bernasconi M (2007) Zebularine reactivates silenced E-cadherin but unlike 5-Azacytidine does not induce switching from latent to lytic Epstein-Barr virus infection in Burkitt’s lymphoma Akata cells. Mol Cancer 6:3–8

    Article  PubMed Central  PubMed  Google Scholar 

  46. Datta J, Ghoshal K, Denny WA, Gamage SA, Brooke DG, Phiasivongsa P, Redkar S, Jacob ST (2009) A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 69:4277–4285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Peng X, Pentassuglia L, Sawyer DB (2010) Emerging anticancer therapeutic targets and the cardiovascular system: is there cause for concern? Circ Res 106:1022–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Brueckner B, Boy RG, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65:6305–6311

    Article  CAS  PubMed  Google Scholar 

  49. Braun J, Boittiaux I, Tilborg A, Lambert D, Wouters J (2010) The dicyclo-hexyl-amine salt of RG108 (N-phthalyl-ltryptophan), a potential epigenetic modulator. Acta Crystallogr Sect E Struct Rep Online 66:3175–3176

    Article  Google Scholar 

  50. Schirrmacher E, Beck C, Brueckner B, Schmitges F, Siedlecki P, Bartenstein P, Lyko F, Schirrmacher R (2006) Synthesis and in vitro evaluation of biotinylated RG108: a high affinity compound for studying binding interactions with human DNA methyltransferases. Bioconjug Chem 17:261–266

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki T, Tanaka R, Hamada S, Nakagawa H, Miyata N (2010) Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg Med Chem Lett 20:1124–1127

    Article  CAS  PubMed  Google Scholar 

  52. Amato RJ (2007) Inhibition of DNA methylation by antisense oligonucleotide MG98 as cancer therapy. Clin Genitourin Cancer 5:422–426

    Article  CAS  PubMed  Google Scholar 

  53. Klisovic RB, Stock W, Cataland S, Klisovic MI, Liu S, Blum W, Green M, Odenike O, Godley L, Burgt JV, Van Laar E, Cullen M, Macleod AR, Besterman JM, Reid GK, Byrd JC, Marcucci G (2008) A phase I biological study of MG98, an oligodeoxynucleotide antisense to DNA methyltransferase 1, in patients with high-risk myelodysplasia and acute myeloid leukemia. Clin Cancer Res 14:2444–2449

    Article  CAS  PubMed  Google Scholar 

  54. Winquist E, Knox J, Ayoub JP, Wood L, Wainman N, Reid GK, Pearce L, Shah A, Eisenhauer E (2006) Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest New Drugs 24:159–167

    Article  CAS  PubMed  Google Scholar 

  55. Plummer R, Vidal L, Griffin M, Lesley M, de Bono J, Coulthard S, Sludden J, Siu LL, Chen EX, Oza AM, Reid GK, McLeod AR, Besterman JM, Lee C, Judson I, Calvert H, Boddy AV (2009) Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors. Clin Cancer Res 15:3177–3183

    Article  CAS  PubMed  Google Scholar 

  56. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  57. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994

    Article  CAS  PubMed  Google Scholar 

  58. Li J, Lin Q, Wang W, Wade P, Wong J (2002) Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev 16:687–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A 93:14503–14508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370–374

    Article  PubMed  Google Scholar 

  61. Kim GW, Yang XJ (2011) Comprehensive lysine acetylomes emerging from bacteria to humans. Trends Biochem Sci 36:211–220

    Article  CAS  PubMed  Google Scholar 

  62. Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Bonfil C, Walkinshaw DR, Besterman JM, Yang XJ (2008) Pharmacological inhibition of histone deacetylases for the treatment of cancer, neurodegenerative disorders and inflammatory diseases. Expert Opin Drug Discov 3:1041–1065

    Article  Google Scholar 

  64. Tan J, Cang S, Ma Y, Petrillo RL, Liu D (2010) Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 3:5

    Article  PubMed Central  PubMed  Google Scholar 

  65. Hoshino I, Matsubara H (2010) Recent advances in histone deacetylase targeted cancer therapy. Surg Today 40:809–815

    Article  CAS  PubMed  Google Scholar 

  66. Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    Article  CAS  PubMed  Google Scholar 

  67. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528

    Article  CAS  PubMed  Google Scholar 

  68. Archer SY, Meng S, Shei A, Hodin RA (1998) p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A 95:6791–6796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  CAS  PubMed  Google Scholar 

  70. Hamer HM, Jonkers DM, Bast A, Vanhoutvin SA, Fischer MA, Kodde A, Troost FJ, Venema K, Brummer RJ (2009) Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin Nutr 28:88–93

    Article  CAS  PubMed  Google Scholar 

  71. Sauer J, Richter KK, Pool-Zobel BL (2007) Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J Nutr Biochem 18:736–745

    Article  CAS  PubMed  Google Scholar 

  72. Spurling CC, Suhl JA, Boucher N, Nelson CE, Rosenberg DW, Giardina C (2008) The short chain fatty acid butyrate induces promoter demethylation and reactivation of RARbeta2 in colon cancer cells. Nutr Cancer 60:692–702

    Article  CAS  PubMed  Google Scholar 

  73. Lambert DW, Wood IS, Ellis A, Shirazi-Beechey SP (2002) Molecular changes in the expression of human colonic nutrient transporters during the transition from normality to malignancy. Br J Cancer 86:1262–1269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Brim H, Kumar K, Nazarian J, Hathout Y, Jafarian A, Lee E, Green W, Smoot D, Park J, Nouraie M, Ashktorab H (2011) SLC5A8 gene, a transporter of butyrate: a gut flora metabolite, is frequently methylated in African American colon adenomas. PLoS One 6:e20216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Camacho LH, Olson J, Tong WP, Young CW, Spriggs DR, Malkin MG (2007) Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors. Invest New Drugs 25:131–138

    Article  CAS  PubMed  Google Scholar 

  76. Carducci MA, Gilbert J, Bowling MK, Noe D, Eisenberger MA, Sinibaldi V, Zabelina Y, Chen TL, Grochow LB, Donehower RC (2001) A phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin Cancer Res 7:3047–3055

    CAS  PubMed  Google Scholar 

  77. Atmaca A, Al-Batran SE, Maurer A, Neumann A, Heinzel T, Hentsch B, Schwarz SE, Hövelmann S, Göttlicher M, Knuth A, Jäger E (2007) Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial. Br J Cancer 97:177–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Lin HY, Chen CS, Lin SP, Weng JR (2006) Targeting histone deacetylase in cancer therapy. Med Res Rev 26:397–413

    Article  CAS  PubMed  Google Scholar 

  79. Cang S, Ma Y, Liu D (2009) New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer. J Hematol Oncol 2:22

    Article  PubMed Central  PubMed  Google Scholar 

  80. Marks PA (2007) Discovery and development of SAHA as an anticancer agent. Oncogene 26:1351–1356

    Article  CAS  PubMed  Google Scholar 

  81. Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA, Richon VM (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci U S A 99:11700–11705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Vansteenkiste J, Van Cutsem E, Dumez H, Chen C, Ricker JL, Randolph SS, Schöffski P (2008) Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Invest New Drugs 26:483–488

    Article  CAS  PubMed  Google Scholar 

  83. Ree AH, Dueland S, Folkvord S, Hole KH, Seierstad T, Johansen M, Abrahamsen TW, Flatmark K (2010) Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study. Lancet Oncol 11:459–464

    Article  CAS  PubMed  Google Scholar 

  84. Bratland A, Dueland S, Hollywood D, Flatmark K, Ree AH (2011) Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy. Radiat Oncol 6:33

    Article  PubMed Central  PubMed  Google Scholar 

  85. Lee EJ, Lee BB, Kim SJ, Park YD, Park J, Kim DH (2008) Histone deacetylase inhibitor scriptaid induces cell cycle arrest and epigenetic change in colon cancer cells. Int J Oncol 33:767–776

    CAS  PubMed  Google Scholar 

  86. LaBonte MJ, Wilson PM, Fazzone W, Russell J, Louie SG, El-Khoueiry A, Lenz HJ, Ladner RD (2011) The dual EGFR/HER2 inhibitor lapatinib synergistically enhances the antitumor activity of the histone deacetylase inhibitor panobinostat in colorectal cancer models. Cancer Res 71:3635–3648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 241:126–133

    Article  CAS  PubMed  Google Scholar 

  88. Doss H, Jones S, Infante J, Spigel D, Willcutt N, Lamar R, Barton J, Keegan M, Burris HA (2008) A phase I trial of romidepsin in combination with gemcitabine in patients with pancreatic and other advanced solid tumors. J Clin Oncol 26(suppl):2567

    Google Scholar 

  89. Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, Kwon HK, Hong S, Lee HY, Lee YW, Lee HW (2000) Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res 60:6068–6074

    CAS  PubMed  Google Scholar 

  90. Rosato RR, Grant S (2003) Histone deacetylase inhibitors in cancer therapy. Cancer Biol Ther 2:30–37

    Article  PubMed  Google Scholar 

  91. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  CAS  PubMed  Google Scholar 

  92. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, Suzuki T, Tsuruo T, Nakanishi O (1999) A synthetic inhibitor of histone deacetylase, MS-27–275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A 96:4592–4597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Suzuki T, Ando T, Tsuchiya K, Fukazawa N, Saito A, Mariko Y, Yamashita T, Nakanishi O (1999) Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem 42:3001–3003

    Article  CAS  PubMed  Google Scholar 

  94. Hurwitz H, Nelson B, O’Dwyer P, Chiorean E, Gabrail N, Li Z, Laille E, Drouin M, Rothenberg ML, Chan E (2008) Phase I/II: the oral isotype-selective HDAC inhibitor MGCD0103 in combination with gemcitabine (Gem) in patients (pts) with refractory solid tumors. J Clin Oncol 26(suppl):4625

    Google Scholar 

  95. Seow A, Vainio H, Yu MC (2005) Effect of glutathione-S-transferase polymorphisms on the cancer preventive potential of isothiocyanates: an epidemiological perspective. Mutat Res 592:58–67

    Article  CAS  PubMed  Google Scholar 

  96. Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Moy KA, Yuan JM, Chung FL, Wang XL, Van Den Berg D, Wang R, Gao YT, Yu MC (2009) Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms and gastric cancer risk: a prospective study of men in Shanghai. Chin Int J Cancer 125:2652–2659

    Article  CAS  Google Scholar 

  98. Ishikawa S, Hayashi H, Kinoshita K, Abe M, Kuroki H, Tokunaga R, Tomiyasu S, Tanaka H, Sugita H, Arita T, Yagi Y, Watanabe M, Hirota M, Baba H (2013) Statins inhibit tumor progression via an enhancer of zeste homolog 2-mediated epigenetic alteration in colorectal cancer. Int J Cancer. doi:10.1002/ijc.28672 (Ahead of print)

    Google Scholar 

  99. Kodach LL, Jacobs RJ, Voorneveld PW, Wildenberg ME, Verspaget HW, van Wezel T, Morreau H, Hommes DW, Peppelenbosch MP, van den Brink GR, Hardwick JC (2011) Statins augment the chemosensitivity of colorectal cancer cells inducing epigenetic reprogramming and reducing colorectal cancer cell “stemness” via the bone morphogenetic protein pathway. Gut 60:1544–1553

    Article  CAS  PubMed  Google Scholar 

  100. Huang YW, Kuo CT, Stoner K, Huang TH, Wang LS (2011) An overview of epigenetics and chemoprevention. FEBS Lett 585:2129–2136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Kim JG, Park MT, Heo K, Yang KM, Yi JM (2013) Epigenetics meets radiation biology as a new approach in cancer treatment. Int J Mol Sci 14:15059–15073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Khare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vaish, V., Khare, T., Verma, M., Khare, S. (2015). Epigenetic Therapy for Colorectal Cancer. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_40

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics