Skip to main content

Toxicoepigenomics and Cancer: Implications for Screening

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Scientists have long considered genetics to be the key mechanism that alters gene expression because of exposure to the environment and toxic substances (toxicants). Recently, epigenetic mechanisms have emerged as an alternative explanation for alterations in gene expression resulting from such exposure. The fact that certain toxic substances that contribute to tumor development do not induce mutations probably results from underlying epigenetic mechanisms. The field of toxicoepigenomics emerged from the combination of epigenetics and classical toxicology. High-throughput technologies now enable evaluation of altered epigenomic profiling in response to toxins and environmental pollutants. Furthermore, differences in the epigenomic backgrounds of individuals may explain why, although whole populations are exposed to toxicants, only a few people in a population develop cancer. Metals in the environment and toxic substances not only alter DNA methylation patterns and histone modifications but also affect enzymes involved in posttranslational modifications of proteins and epigenetic regulation, and thereby contribute to carcinogenesis. This article describes different toxic substances and environmental pollutants that alter epigenetic profiling and discusses how this information can be used in screening populations at high risk of developing cancer. Research opportunities and challengers in the field also are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DNMTs:

DNA methyltransferases

EWAS:

Epigenome-wide association studies

GWAS:

Genome-wide association studies

HAT:

Histone acetyltransferase

HDACS:

Histone deacetylases

LINE:

Long integrated nuclear element

MDBPs:

Methylated DNA-binding proteins

miRNA:

microRNA

PFOS:

Perfluorooctane sulfonate

SINE:

Small integrated nuclear element

References

  1. Legler J (2010) Epigenetics: an emerging field in environmental toxicology. Integr Environ Assess Manag 6:314–315

    Article  PubMed  Google Scholar 

  2. Luteijn MJ, Ketting RF (2013) PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 14:523–534

    Article  CAS  PubMed  Google Scholar 

  3. Smirnova L, Sittka A, Luch A (2012) On the role of low-dose effects and epigenetics in toxicology. EXS 101:499–550

    PubMed  Google Scholar 

  4. Hu J, Ma H, Zhang W, Yu Z, Sheng G, Fu J (2014) Effects of benzene and its metabolites on global DNA methylation in human normal hepatic l02 cells. Environ Toxicol 29:108–116

    Article  CAS  PubMed  Google Scholar 

  5. Xing C, Chen Q, Li G, Zhang L, Zheng M, Zou Z, Hou L, Wang QF, Liu X, Guo X (2013) Microsomal epoxide hydrolase (EPHX1) polymorphisms are associated with aberrant promoter methylation of ERCC3 and hematotoxicity in benzene-exposed workers. Environ Mol Mutagen 54:397–405

    Article  CAS  PubMed  Google Scholar 

  6. Seow WJ, Pesatori AC, Dimont E, Farmer PB, Albetti B, Ettinger AS, Bollati V, Bolognesi C, Roggieri P, Panev TI, Georgieva T, Merlo DF, Bertazzi PA, Baccarelli AA (2012) Urinary benzene biomarkers and DNA methylation in Bulgarian petrochemical workers: study findings and comparison of linear and beta regression models. PLoS One 7:e50471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fustinoni S, Rossella F, Polledri E, Bollati V, Campo L, Byun HM, Agnello L, Consonni D, Pesatori AC, Baccarelli A, Bertazzi PA (2012) Global DNA methylation and low-level exposure to benzene. Med Lav 103:84–95

    PubMed  Google Scholar 

  8. Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L (2011) An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect 119:11–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Verma M (2012) Epigenome-Wide Association Studies (EWAS) in Cancer. Curr Genomics 13:308–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Berghof TV, Parmentier HK, Lammers A (2013) Transgenerational epigenetic effects on innate immunity in broilers: an underestimated field to be explored? Poult Sci 92:2904–2913

    Article  CAS  PubMed  Google Scholar 

  11. Anderson GD, Acheampong AA, Wilensky AJ, Levy RH (1992) Effect of valproate dose on formation of hepatotoxic metabolites. Epilepsia 33:736–742

    Article  CAS  PubMed  Google Scholar 

  12. Su S, Jin Y, Zhang W, Yang L, Shen Y, Cao Y, Tong J (2006) Aberrant promoter methylation of p16(INK4a) and O(6)-methylguanine-DNA methyltransferase genes in workers at a Chinese uranium mine. J Occup Health 48:261–266

    Article  CAS  PubMed  Google Scholar 

  13. Verma M, Rogers S, Divi RL, Scully SD, Nelson S, Su LJ, Ross S, Pilch S, Winn DM, Khoury MJ (2014) Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomarkers Prev 23:223–233

    Article  PubMed  Google Scholar 

  14. Verma M, Khoury MJ, Ioannidis JP (2013) Opportunities and challenges for selected emerging technologies in cancer epidemiology: mitochondrial, epigenomic, metabolomic, and telomerase profiling. Cancer Epidemiol Biomarkers Prev 22:189–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Verma M (2012) Epigenetic biomarkers in cancer epidemiology. Methods Mol Biol 863:467–480

    Article  CAS  PubMed  Google Scholar 

  16. Deng G, Chen A, Hong J, Chae HS, Kim YS (1999) Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res 59:2029–2033

    CAS  PubMed  Google Scholar 

  17. Herceg Z, Ushijima T (2010) Epigenetics is a fascinating field of modern biology. Preface. Adv Genet 71:xi–xii

    Article  PubMed  Google Scholar 

  18. Herceg Z, Ushijima T (2010) Introduction: epigenetics and cancer. Adv Genet 70:1–23

    Article  PubMed  Google Scholar 

  19. Herceg Z (2007) Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 22:91–103

    Article  CAS  PubMed  Google Scholar 

  20. Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1107

    Article  CAS  PubMed  Google Scholar 

  21. Jawert F, Hasseus B, Kjeller G, Magnusson B, Sand L, Larsson L (2013) Loss of 5-hydroxymethylcytosine and TET2 in oral squamous cell carcinoma. Anticancer Res 33:4325–4328

    PubMed  Google Scholar 

  22. Yang Q, Wu K, Ji M, Jin W, He N, Shi B, Hou P (2013) Decreased 5-hydroxymethylcytosine (5-hmC) is an independent poor prognostic factor in gastric cancer patients. J Biomed Nanotechnol 9:1607–1616

    Article  CAS  PubMed  Google Scholar 

  23. Verma M (2013) Cancer control and prevention: nutrition and epigenetics. Curr Opin Clin Nutr Metab Care 16:376–384

    Article  CAS  PubMed  Google Scholar 

  24. Khare S, Verma M (2012) Epigenetics of colon cancer. Methods Mol Biol 863:177–185

    Article  CAS  PubMed  Google Scholar 

  25. Mishra A, Verma M (2012) Epigenetics of solid cancer stem cells. Methods Mol Biol 863:15–31

    Article  CAS  PubMed  Google Scholar 

  26. Kumar D, Verma M (2009) Methods in cancer epigenetics and epidemiology. Methods Mol Biol 471:273–288

    Article  CAS  PubMed  Google Scholar 

  27. Inamochi Y, Mochizuki K, Goda T (2014) Histone code of genes induced by co-treatment with a glucocorticoid hormone agonist and a p44/42 MAPK inhibitor in human small intestinal Caco-2 cells. Biochim Biophys Acta 1840:693–700

    Article  CAS  PubMed  Google Scholar 

  28. Lau PN, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci U S A 108:2801–2806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Garske AL, Craciun G, Denu JM (2008) A combinatorial H4 tail library for exploring the histone code. Biochemistry 47:8094–8102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lukas J, Bartek J (2008) DNA damage: a histone-code mediator leaves the stage. Nat Struct Mol Biol 15:430–432

    Article  CAS  PubMed  Google Scholar 

  31. Crea F (2012) Histone code, human growth and cancer. Oncotarget 3:1–2

    PubMed Central  PubMed  Google Scholar 

  32. Szyf M (2011) The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life. Epigenetics 6:971–978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Szyf M (2011) DNA methylation, the early-life social environment and behavioral disorders. J Neurodev Disord 3:238–249

    Article  PubMed Central  PubMed  Google Scholar 

  34. Szyf M (2011) The implications of DNA methylation for toxicology: toward toxicomethylomics, the toxicology of DNA methylation. Toxicol Sci 120:235–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Szyf M (2009) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263

    Article  CAS  PubMed  Google Scholar 

  36. Arita A, Munoz A, Chervona Y, Niu J, Qu Q, Zhao N, Ruan Y, Kiok K, Kluz T, Sun H, Clancy HA, Shamy M, Costa M (2013) Gene expression profiles in peripheral blood mononuclear cells of Chinese nickel refinery workers with high exposures to nickel and control subjects. Cancer Epidemiol Biomarkers Prev 22:261–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Chervona Y, Hall MN, Arita A, Wu F, Sun H, Tseng HC, Ali E, Uddin MN, Liu X, Zoroddu MA, Gamble MV, Costa M (2012) Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol Biomarkers Prev 21:2252–2260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Chervona Y, Costa M (2012) Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res 2:589–597

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Chervona Y, Costa M (2012) The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic Biol Med 53:1041–1047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Arita A, Shamy MY, Chervona Y, Clancy HA, Sun H, Hall MN, Qu Q, Gamble MV, Costa M (2012) The effect of exposure to carcinogenic metals on histone tail modifications and gene expression in human subjects. J Trace Elem Med Biol 26:174–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Chervona Y, Arita A, Costa M (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4:619–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Arita A, Niu J, Qu Q, Zhao N, Ruan Y, Nadas A, Chervona Y, Wu F, Sun H, Hayes RB, Costa M (2012) Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel. Environ Health Perspect 120:198–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Saldanha SN, Tollefsbol TO (2014) Impact of epigenetic dietary compounds on transgenerational prevention of human diseases. AAPS J 16:27–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Brasset E, Chambeyron S (2013) Epigenetics and transgenerational inheritance. Genome Biol 14:306

    PubMed Central  PubMed  Google Scholar 

  46. Skinner MK (2011) Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Res C Embryo Today 93:51–55

    Article  CAS  PubMed  Google Scholar 

  47. Watson RE, Goodman JI (2002) Epigenetics and DNA methylation come of age in toxicology. Toxicol Sci 67:11–16

    Article  CAS  PubMed  Google Scholar 

  48. Arita A, Costa M (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1:222–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ren X, Aleshin M, Jo WJ, Dills R, Kalman DA, Vulpe CD, Smith MT, Zhang L (2011) Involvement of N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) in arsenic biomethylation and its role in arsenic-induced toxicity. Environ Health Perspect 119:771–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Sturchio E, Colombo T, Boccia P, Carucci N, Meconi C, Minoia C, Macino G (2013) Arsenic exposure triggers a shift in microRNA expression. Sci Total Environ 472C:672–680

    Google Scholar 

  51. Cao Y, Yu SL, Wang Y, Guo GY, Ding Q, An RH (2011) MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumour Biol 32:179–188

    Article  CAS  PubMed  Google Scholar 

  52. Kojima C, Ramirez DC, Tokar EJ, Himeno S, Drobna Z, Styblo M, Mason RP, Waalkes MP (2009) Requirement of arsenic biomethylation for oxidative DNA damage. J Natl Cancer Inst 101:1670–1681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Lin HJ, Sung TI, Chen CY, Guo HR (2013) Arsenic levels in drinking water and mortality of liver cancer in Taiwan. J Hazard Mater 262:1132–1138

    Article  CAS  PubMed  Google Scholar 

  54. Liu J, Waalkes MP (2008) Liver is a target of arsenic carcinogenesis. Toxicol Sci 105:24–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Kile ML, Ronnenberg AG (2008) Can folate intake reduce arsenic toxicity? Nutr Rev 66:349–353

    Article  PubMed Central  PubMed  Google Scholar 

  56. Ji Z, Zhang L, Peng V, Ren X, McHale CM, Smith MT (2010) A comparison of the cytogenetic alterations and global DNA hypomethylation induced by the benzene metabolite, hydroquinone, with those induced by melphalan and etoposide. Leukemia 24:986–991

    Article  CAS  PubMed  Google Scholar 

  57. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67:876–880

    Article  CAS  PubMed  Google Scholar 

  58. Sanders AP, Smeester L, Rojas D, Debussycher T, Wu MC, Wright FA, Zhou YH, Laine JE, Rager JE, Swamy GK, Ashley-Koch A, Lynn Miranda M, Fry RC (2014) Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 9:212–221

    Article  CAS  PubMed  Google Scholar 

  59. Kondo K, Takahashi Y, Hirose Y, Nagao T, Tsuyuguchi M, Hashimoto M, Ochiai A, Monden Y, Tangoku A (2006) The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer. Lung Cancer 53:295–302

    Article  PubMed  Google Scholar 

  60. Takahashi Y, Kondo K, Hirose T, Nakagawa H, Tsuyuguchi M, Hashimoto M, Sano T, Ochiai A, Monden Y (2005) Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol Carcinog 42:150–158

    Article  CAS  PubMed  Google Scholar 

  61. Kippler M, Engstrom K, Mlakar SJ, Bottai M, Ahmed S, Hossain MB, Raqib R, Vahter M, Broberg K (2013) Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics 8:494–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zhou ZH, Lei YX, Wang CX (2012) Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium. Toxicol Sci 125:412–417

    Article  CAS  PubMed  Google Scholar 

  63. Ali AH, Kondo K, Namura T, Senba Y, Takizawa H, Nakagawa Y, Toba H, Kenzaki K, Sakiyama S, Tangoku A (2011) Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog 50:89–99

    Article  CAS  PubMed  Google Scholar 

  64. Boellmann F, Zhang L, Clewell HJ, Schroth GP, Kenyon EM, Andersen ME, Thomas RS (2010) Genome-wide analysis of DNA methylation and gene expression changes in the mouse lung following subchronic arsenate exposure. Toxicol Sci 117:404–417

    Article  CAS  PubMed  Google Scholar 

  65. Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 15:2547–2557

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Yan Y, Kluz T, Zhang P, Chen HB, Costa M (2003) Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol Appl Pharmacol 190:272–277

    Article  CAS  PubMed  Google Scholar 

  67. Zhang J, Li M, Wu Y, Fan Y, Zhou Y, Tan L, Shao Z, Shi H (2011) Methylation of RAR-beta2, RASSF1A, and CDKN2A genes induced by nickel subsulfide and nickel-carcinogenesis in rats. Biomed Environ Sci 24:163–171

    CAS  PubMed  Google Scholar 

  68. Lee YW, Broday L, Costa M (1998) Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels. Mutat Res 415:213–218

    Article  CAS  PubMed  Google Scholar 

  69. Zhou X, Li Q, Arita A, Sun H, Costa M (2009) Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol 236:78–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Costa M, Davidson TL, Chen H, Ke Q, Zhang P, Yan Y, Huang C, Kluz T (2005) Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res 592:79–88

    Article  CAS  PubMed  Google Scholar 

  71. Wan YJ, Li YY, Xia W, Chen J, Lv ZQ, Zeng HC, Zhang L, Yang WJ, Chen T, Lin Y, Wei J, Xu SQ (2010) Alterations in tumor biomarker GSTP gene methylation patterns induced by prenatal exposure to PFOS. Toxicology 274:57–64

    Article  CAS  PubMed  Google Scholar 

  72. Watkins DJ, Wellenius GA, Butler RA, Bartell SM, Fletcher T, Kelsey KT (2014) Associations between serum perfluoroalkyl acids and LINE-1 DNA methylation. Environ Int 63:71–76

    Article  CAS  PubMed  Google Scholar 

  73. Jain RB (2013) Effect of pregnancy on the levels of selected perfluoroalkyl compounds for females aged 17–39 years: data from National Health and Nutrition Examination Survey 2003–2008. J Toxicol Environ Health A 76:409–421

    Article  CAS  PubMed  Google Scholar 

  74. Miller AC, Stewart M, Rivas R (2009) DNA methylation during depleted uranium-induced leukemia. Biochimie 91:1328–1330

    Article  CAS  PubMed  Google Scholar 

  75. Hanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, vom Saal FS, Taylor JA, Steuerwald AJ, Fujimoto VY (2012) DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod 27:1401–1410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Brouwer KL, Hall ES, Pollack GM (1993) Protein binding and hepatobiliary distribution of valproic acid and valproate glucuronide in rats. Biochem Pharmacol 45:735–742

    Article  CAS  PubMed  Google Scholar 

  77. Chiou WL (1978) Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level–time curve. J Pharmacokinet Biopharm 6:539–546

    Article  CAS  PubMed  Google Scholar 

  78. Cotariu D, Evans S, Zaidman JL, Marcus O (1990) Early changes in hepatic redox homeostasis following treatment with a single dose of valproic acid. Biochem Pharmacol 40:589–593

    Article  CAS  PubMed  Google Scholar 

  79. Pansoy A, Ahmed S, Valen E, Sandelin A, Matthews J (2010) 3-methylcholanthrene induces differential recruitment of aryl hydrocarbon receptor to human promoters. Toxicol Sci 117:90–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Joanne Brodsky of The Scientific Consulting Group, Inc., for reading the manuscript and providing suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Verma Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Verma, M. (2015). Toxicoepigenomics and Cancer: Implications for Screening. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics