Skip to main content

Computer Simulations of Phase Separation in Lipid Bilayers and Monolayers

  • Protocol
  • First Online:
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1232))

Abstract

Studying phase coexistence in lipid bilayers and monolayers is important for understanding lipid–lipid interactions underlying lateral organization in biological membranes. Computer simulations follow experimental approaches and use model lipid mixtures of simplified composition. Atomistic simulations give detailed information on the specificity of intermolecular interactions, while coarse-grained simulations achieve large time and length scales and provide a bridge towards state-of-the-art experimental techniques. Computer simulations allow characterizing the structure and composition of domains during phase transformations at Angstrom and picosecond resolution, and bring new insights into phase behavior of lipid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. Eur J Lipid Sci Technol 107(5):337–364

    CAS  Google Scholar 

  2. Mouritsen OG (2005) Life - as a matter of fat, The frontiers collection. Springer, Heidelberg

    Google Scholar 

  3. Tanford C (1980) The hydrophobic effect. Wiley, New York, NY

    Google Scholar 

  4. Seddon JM, Templer RH (1995) Chapter 3: Polymorphism of lipid-water systems. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics, vol 1. Elsevier, North-Holland, pp 97–160

    Google Scholar 

  5. Vargaftik NB, Volkov BN, Voljak LD (1983) International tables of the surface tension of water. J Phys Chem Ref Data 12(3):817–820

    CAS  Google Scholar 

  6. Knobler CM, Desai RC (1992) Phase-transitions in monolayers. Annu Rev Phys Chem 43:207–236

    CAS  Google Scholar 

  7. Kaganer VM, Mohwald H, Dutta P (1999) Structure and phase transitions in Langmuir monolayers. Rev Mod Phys 71(3):779–819

    CAS  Google Scholar 

  8. Jahnig F (1996) What is the surface tension of a lipid bilayer membrane? Biophys J 71(3):1348–1349

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Hames D, Hooper N (2006) Instant notes in biochemistry. Taylor & Francis, New York, NY

    Google Scholar 

  10. Clements JA (1957) Surface tension of lung extracts. Proc Soc Exp Biol Med 95(1): 170–172

    PubMed  CAS  Google Scholar 

  11. Bachofen H, Schurch S (2001) Alveolar surface forces and lung architecture. Comp Biochem Physiol A Comp Physiol 129(1): 183–193

    CAS  Google Scholar 

  12. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    PubMed  PubMed Central  Google Scholar 

  13. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438(7068): 578–580

    PubMed  CAS  Google Scholar 

  14. Plasencia I, Norlen L, Bagatolli LA (2007) Direct visualization of lipid domains in human skin stratum corneum’s lipid membranes: effect of pH and temperature. Biophys J 93(9):3142–3155

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633): 569–572

    PubMed  CAS  Google Scholar 

  16. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    PubMed  CAS  Google Scholar 

  17. Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47(7):1597–1598

    PubMed  CAS  Google Scholar 

  18. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    PubMed  CAS  Google Scholar 

  19. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    PubMed  CAS  Google Scholar 

  20. Mayor S, Rao M (2004) Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5(4):231–240

    PubMed  CAS  Google Scholar 

  21. Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4(11):724–738

    PubMed  CAS  Google Scholar 

  22. Bernardino de la Serna J, Perez-Gil J, Simonsen AC, Bagatolli LA (2004) Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J Biol Chem 279(39): 40715–40722

    PubMed  Google Scholar 

  23. Nag K, Perez-Gil J, Ruano MLF, Worthman LAD, Stewart J, Casals C, Keough KMW (1998) Phase transitions in films of lung surfactant at the air-water interface. Biophys J 74(6):2983–2995

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Piknova B, Schram V, Hall SB (2002) Pulmonary surfactant: phase behavior and function. Curr Opin Struct Biol 12(4): 487–494

    PubMed  CAS  Google Scholar 

  25. Zuo YY, Tadayyon SM, Keating E, Zhao L, Veldhuizen RAW, Petersen NO, Amrein MW, Possmayer F (2008) Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films, II: albumin-inhibited pulmonary surfactant films and the effect of SP-A. Biophys J 95(6):2779–2791

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Keating E, Zuo YY, Tadayyon SM, Petersen NO, Possmayer F, Veldhuizen RAW (2012) A modified squeeze-out mechanism for generating high surface pressures with pulmonary surfactant. Biochim Biophys Acta 1818(5): 1225–1234

    PubMed  CAS  Google Scholar 

  27. Fan J, Sammalkorpi M, Haataja M (2010) Formation and regulation of lipid microdomains in cell membranes: theory, modeling, and speculation. FEBS Lett 584(9):1678–1684

    PubMed  CAS  Google Scholar 

  28. Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9(1):7–14

    PubMed  CAS  Google Scholar 

  29. Ziolkowska NE, Christiano R, Walther TC (2012) Organized living: formation mechanisms and functions of plasma membrane domains in yeast. Trends Cell Biol 22(3): 151–158

    PubMed  CAS  Google Scholar 

  30. Honerkamp-Smith AR, Veatch SL, Keller SL (2009) An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim Biophys Acta Biomembr 1788(1):53–63

    CAS  Google Scholar 

  31. van Meer G (2005) Cellular lipidomics. EMBO J 24(18):3159–3165

    PubMed  PubMed Central  Google Scholar 

  32. Konyakhina TM, Wu J, Mastroianni JD, Heberle FA, Feigenson GW (2013) Phase diagram of a 4-component lipid mixture: DSPC/DOPC/POPC/chol. Biochim Biophys Acta Biomembr 1828(9):2204–2214

    CAS  Google Scholar 

  33. Davis JH, Clair JJ, Juhasz J (2009) Phase equilibria in DOPC/DPPC-d(62)/cholesterol mixtures. Biophys J 96(2):521–539

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Feigenson GW (2009) Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures. Biochim Biophys Acta Biomembr 1788(1):47–52

    CAS  Google Scholar 

  35. Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746(3):172–185

    PubMed  CAS  Google Scholar 

  36. Elson EL, Fried E, Dolbow JE, Genin GM (2010) Phase separation in biological membranes: integration of theory and experiment. Annu Rev Biophys 39:207–226

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schoenle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233): 1159–U1121

    PubMed  CAS  Google Scholar 

  38. Frisz JF, Lou KY, Klitzing HA, Hanafin WP, Lizunov V, Wilson RL, Carpenter KJ, Kim R, Hutcheon ID, Zimmerberg J, Weber PK, Kraft ML (2013) Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc Natl Acad Sci U S A 110(8):E613–E622

    PubMed  CAS  PubMed Central  Google Scholar 

  39. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18): 3586–3616

    PubMed  CAS  Google Scholar 

  40. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23): 7830–7843

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Feller SE, MacKerell AD (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104(31):7510–7515

    CAS  Google Scholar 

  42. Klauda JB, Brooks BR, MacKerell AD, Venable RM, Pastor RW (2005) An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J Phys Chem B 109(11):5300–5311

    PubMed  CAS  Google Scholar 

  43. Jambeck JPM, Lyubartsev AP (2012) An extension and further validation of an All-atomistic force field for biological membranes. J Chem Theor Comput 8(8):2938–2948

    Google Scholar 

  44. Jambeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined All-atom force field for phosphatidylcholine lipids. J Phys Chem B 116(10): 3164–3179

    PubMed  PubMed Central  Google Scholar 

  45. Jambeck JPM, Lyubartsev AP (2013) Another piece of the membrane puzzle: extending slipids further. J Chem Theor Comput 9(1):774–784

    Google Scholar 

  46. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Dickson CJ, Madej BD, Skjevik AA, Betz RM, Teigen K, Gould IR, Walker RC (2014) Lipid14: the amber lipid force field. J Chem Theor Comput 10(2):865–879

    CAS  Google Scholar 

  48. Hermans J, Berendsen HJC, Vangunsteren WF, Postma JPM (1984) A consistent empirical potential for water-protein interactions. Biopolymers 23(8):1513–1518

    CAS  Google Scholar 

  49. Poger D, Van Gunsteren WF, Mark AE (2010) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31(6):1117–1125

    PubMed  CAS  Google Scholar 

  50. Poger D, Mark AE (2010) On the validation of molecular dynamics simulations of saturated and cis-monounsaturated phosphatidylcholine lipid bilayers: a comparison with experiment. J Chem Theor Comput 6(1): 325–336

    CAS  Google Scholar 

  51. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72(5): 2002–2013

    PubMed  CAS  PubMed Central  Google Scholar 

  52. de Joannis J, Coppock PS, Yin F, Mori M, Zamorano A, Kindt JT (2011) Atomistic simulation of cholesterol effects on miscibility of saturated and unsaturated phospholipids: implications for liquid-ordered/liquid-disordered phase coexistence. J Am Chem Soc 133(10):3625–3634

    PubMed  Google Scholar 

  53. Tjörnhammar R, Edholm O (2014) Atomistic simulations of gel and liquid crystalline lipid bilayers. Biophys J 106(2):403

    Google Scholar 

  54. Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E (2014) The molecular structure of the liquid-ordered phase of lipid bilayers. J Am Chem Soc 136(2):725–732

    PubMed  CAS  Google Scholar 

  55. Hakobyan D, Heuer A (2013) Phase separation in a lipid/cholesterol system: comparison of coarse-grained and united-atom simulations. J Phys Chem B 117(14):3841–3851

    PubMed  CAS  Google Scholar 

  56. Polley A, Vemparala S, Rao M (2012) Atomistic simulations of a multicomponent asymmetric lipid bilayer. J Phys Chem B 116(45):13403–13410

    PubMed  CAS  Google Scholar 

  57. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27): 7812–7824

    PubMed  CAS  Google Scholar 

  58. Bennett WFD, Tieleman DP (2013) Computer simulations of lipid membrane domains. Biochim Biophys Acta Biomembr 1828(8):1765–1776

    CAS  Google Scholar 

  59. Shinoda W, DeVane R, Klein ML (2010) Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. J Phys Chem B 114(20):6836–6849

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Shinoda W, Devane R, Klein ML (2007) Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol Simul 33(1–2):27–36

    CAS  Google Scholar 

  61. Lenz O, Schmid F (2005) A simple computer model for liquid lipid bilayers. J Mol Liq 117(1–3):147–152

    CAS  Google Scholar 

  62. Venturoli M, Sperotto MM, Kranenburg M, Smit B (2006) Mesoscopic models of biological membranes. Phys Rep Rev Sec Phys Lett 437(1–2):1–54

    CAS  Google Scholar 

  63. Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta Biomembr 1788(1): 149–168

    CAS  Google Scholar 

  64. Mueller M, Katsov K, Schick M (2006) Biological and synthetic membranes: what can be learned from a coarse-grained description? Phys Rep Rev Sec Phys Lett 434(5–6):113–176

    CAS  Google Scholar 

  65. Brannigan G, Lin LCL, Brown FLH (2006) Implicit solvent simulation models for biomembranes. Eur Biophys J 35(2):104–124

    PubMed  CAS  Google Scholar 

  66. Deserno M (2009) Mesoscopic membrane physics: concepts, simulations, and selected applications. Macromol Rapid Commun 30(9–10):752–771

    PubMed  CAS  Google Scholar 

  67. Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97(1):50–58

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Herrera FE, Pantano S (2012) Structure and dynamics of nano-sized raft-like domains on the plasma membrane. J Chem Phys 136(1):015103

    PubMed  Google Scholar 

  69. Marrink SJ, Risselada J, Mark AE (2005) Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. Chem Phys Lipids 135(2):223–244

    PubMed  CAS  Google Scholar 

  70. de Vries AH, Yefimov S, Mark AE, Marrink SJ (2005) Molecular structure of the lecithin ripple phase. Proc Natl Acad Sci U S A 102(15):5392–5396

    PubMed  PubMed Central  Google Scholar 

  71. Rodgers JM, Sorensen J, de Meyer FJM, Schiott B, Smit B (2012) Understanding the phase behavior of coarse-grained model lipid bilayers through computational calorimetry. J Phys Chem B 116(5):1551–1569

    PubMed  CAS  Google Scholar 

  72. Coppock PS, Kindt JT (2010) Determination of phase transition temperatures for atomistic models of lipids from temperature-dependent stripe domain growth kinetics. J Phys Chem B 114(35):11468–11473

    PubMed  CAS  Google Scholar 

  73. Revalee JD, Laradji M, Kumar PBS (2008) Implicit-solvent mesoscale model based on soft-core potentials for self-assembled lipid membranes. J Chem Phys 128(3):035102

    PubMed  Google Scholar 

  74. Baoukina S, Monticelli L, Marrink SJ, Tieleman DP (2007) Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir 23(25):12617–12623

    PubMed  CAS  Google Scholar 

  75. Knecht V, Muller M, Bonn M, Marrink SJ, Mark AE (2005) Simulation studies of pore and domain formation in a phospholipid monolayer. J Chem Phys 122(2):024704

    PubMed  Google Scholar 

  76. Baoukina S, Mendez-Villuendas E, Tieleman DP (2012) Molecular view of phase coexistence in lipid monolayers. J Am Chem Soc 134(42):17543–17553

    PubMed  CAS  Google Scholar 

  77. Duncan SL, Dalal IS, Larson RG (2011) Molecular dynamics simulation of phase transitions in model lung surfactant monolayers. Biochim Biophys Acta Biomembr 1808(10): 2450–2465

    CAS  Google Scholar 

  78. Coppock PS, Kindt JT (2009) Atomistic simulations of mixed-lipid bilayers in gel and fluid phases. Langmuir 25(1):352–359

    PubMed  CAS  Google Scholar 

  79. Stevens MJ (2005) Complementary matching in domain formation within lipid bilayers. J Am Chem Soc 127(44):15330–15331

    PubMed  CAS  Google Scholar 

  80. Shi Q, Voth GA (2005) Multi-scale modeling of phase separation in mixed lipid bilayers. Biophys J 89(4):2385–2394

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Faller R, Marrink SJ (2004) Simulation of domain formation in DLPC-DSPC mixed bilayers. Langmuir 20(18):7686–7693

    PubMed  CAS  Google Scholar 

  82. Bennun SV, Longo M, Faller R (2007) Phase and mixing behavior in two-component lipid bilayers: a molecular dynamics study in DLPC/DSPC mixtures. J Phys Chem B 111(32):9504–9512

    PubMed  CAS  Google Scholar 

  83. Muddana HS, Chiang HH, Butler PJ (2012) Tuning membrane phase separation using nonlipid amphiphiles. Biophys J 102(3): 489–497

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Laradji M, Kumar PBS (2005) Domain growth, budding, and fission in phase-separating self-assembled fluid bilayers. J Chem Phys 123(22):224902

    PubMed  Google Scholar 

  85. Illya G, Lipowsky R, Shillcock JC (2006) Two-component membrane material properties and domain formation from dissipative particle dynamics. J Chem Phys 125(11): 114710

    PubMed  CAS  Google Scholar 

  86. Hong B, Qiu F, Zhang H, Yang Y (2007) Budding dynamics of individual domains in multicomponent membranes simulated by N-varied dissipative particle dynamics. J Phys Chem B 111(21):5837–5849

    PubMed  CAS  Google Scholar 

  87. Sugar IP, Chong PLG (2012) A statistical mechanical model of cholesterol/phospholipid mixtures: linking condensed complexes, superlattices, and the phase diagram. J Am Chem Soc 134(2):1164–1171

    PubMed  CAS  PubMed Central  Google Scholar 

  88. McMullen TPW, Lewis R, McElhaney RN (2004) Cholesterol-phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes. Curr Opin Colloid Interface Sci 8(6):459–468

    CAS  Google Scholar 

  89. Waheed Q, Tjornhammar R, Edholm O (2012) Phase transitions in coarse-grained lipid bilayers containing cholesterol by molecular dynamics simulations. Biophys J 103(10): 2125–2133

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Meinhardt S, Vink RLC, Schmid F (2013) Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers. Proc Natl Acad Sci U S A 110(12):4476–4481

    PubMed  CAS  PubMed Central  Google Scholar 

  91. de Meyer FJM, Benjamini A, Rodgers JM, Misteli Y, Smit B (2010) Molecular simulation of the DMPC-cholesterol phase diagram. J Phys Chem B 114(32):10451–10461

    PubMed  Google Scholar 

  92. Martinez-Seara H, Rog T, Karttunen M, Vattulainen I, Reigada R (2010) Cholesterol induces specific spatial and orientational order in cholesterol/phospholipid membranes. PLoS One 5(6):e11162

    PubMed  PubMed Central  Google Scholar 

  93. Khelashvili G, Pabst G, Harries D (2010) Cholesterol orientation and tilt modulus in DMPC bilayers. J Phys Chem B 114(22):7524–7534

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Mihailescu M, Vaswani RG, Jardon-Valadez E, Castro-Roman F, Freites JA, Worcester DL, Chamberlin AR, Tobias DJ, White SH (2011) Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. Biophys J 100(6):1455–1462

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Bennett WFD, MacCallum JL, Tieleman DP (2009) Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes. J Am Chem Soc 131(5):1972–1978

    PubMed  CAS  Google Scholar 

  96. Rog T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M (2009) Ordering effects of cholesterol and its analogues. Biochim Biophys Acta Biomembr 1788(1):97–121

    CAS  Google Scholar 

  97. Berkowitz ML (2009) Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochim Biophys Acta Biomembr 1788(1):86–96

    CAS  Google Scholar 

  98. de Meyer F, Smit B (2009) Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci U S A 106(10): 3654–3658

    PubMed  PubMed Central  Google Scholar 

  99. Pandit SA, Jakobsson E, Scott HL (2004) Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys J 87(5):3312–3322

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Niemela PS, Ollila S, Hyvonen MT, Karttunen M, Vattulainen I (2007) Assessing the nature of lipid raft membranes. PLoS Comput Biol 3(2):e34

    PubMed  PubMed Central  Google Scholar 

  101. Risselada HJ, Marrink SJ (2008) The molecular face of lipid rafts in model membranes. Proc Natl Acad Sci U S A 105(45):17367–17372

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Risselada HJ, Marrink SJ, Muller M (2011) Curvature-dependent elastic properties of liquid-ordered domains result in inverted domain sorting on uniaxially compressed vesicles. Phys Rev Lett 106(14):148102

    PubMed  Google Scholar 

  103. Baoukina S, Mendez-Villuendas E, Bennett WFD, Tieleman DP (2013) Computer simulations of the phase separation in model membranes. Faraday Discuss 161:63–75

    PubMed  CAS  Google Scholar 

  104. Perlmutter JD, Sachs JN (2011) Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations. J Am Chem Soc 133(17):6563–6577

    PubMed  CAS  Google Scholar 

  105. Piggot TJ, Holdbrook DA, Khalid S (2011) Electroporation of the E. coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J Phys Chem B 115(45):13381–13388

    PubMed  CAS  Google Scholar 

  106. Kiessling V, Wan C, Tamm LK (2009) Domain coupling in asymmetric lipid bilayers. Biochim Biophys Acta Biomembr 1788(1): 64–71

    CAS  Google Scholar 

  107. May S (2009) Trans-monolayer coupling of fluid domains in lipid bilayers. Soft Matter 5(17):3148–3156

    CAS  Google Scholar 

  108. Brewster R, Pincus PA, Safran SA (2009) Hybrid lipids as a biological surface-active component. Biophys J 97(4):1087–1094

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Schäfer LV, Marrink SJ (2010) Partitioning of lipids at domain boundaries in model membranes. Biophys J 99(12):L91–L93

    PubMed  PubMed Central  Google Scholar 

  110. Rosetti C, Pastorino C (2012) Comparison of ternary bilayer mixtures with asymmetric or symmetric unsaturated phosphatidylcholine lipids by coarse grained molecular dynamics simulations. J Phys Chem B 116(11): 3525–3537

    PubMed  CAS  Google Scholar 

  111. Hakobyan D, Heuer A (2014) Key molecular requirements for raft formation in lipid/cholesterol membranes. PLoS One 9(2):e87369

    PubMed  PubMed Central  Google Scholar 

  112. Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta 1286(3): 183–223

    PubMed  CAS  Google Scholar 

  113. Baoukina S, Marrink SJ, Tieleman DP (2010) Lateral pressure profiles in lipid monolayers. Faraday Discuss 144:393–409

    PubMed  CAS  Google Scholar 

  114. Wu Z, Cui QA, Yethiraj A (2010) A new coarse-grained model for water: the importance of electrostatic interactions. J Phys Chem B 114(32):10524–10529

    PubMed  CAS  Google Scholar 

  115. Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123(23): 234505

    PubMed  CAS  Google Scholar 

  116. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    CAS  Google Scholar 

  117. Yesylevskyy SO, Schafer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6(6):e1000810

    PubMed  PubMed Central  Google Scholar 

  118. Davis RS, Kumar PBS, Sperotto MM, Laradji M (2013) Predictions of phase separation in three-component lipid membranes by the MARTINI force field. J Phys Chem B 117(15):4072–4080

    PubMed  CAS  Google Scholar 

  119. Domanski J, Marrink SJ, Schäfer LV (2012) Transmembrane helices can induce domain formation in crowded model membranes. Biochim Biophys Acta 1818(4):984–994

    PubMed  CAS  Google Scholar 

  120. Camley BA, Brown FLH (2011) Dynamic scaling in phase separation kinetics for quasi-two-dimensional membranes. J Chem Phys 135(22):225106

    PubMed  Google Scholar 

  121. Wassenaar TA, Pluhackova K, Bockmann RA, Marrink SJ, Tieleman DP (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theor Comput 10(2):676–690

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (Canada). DPT is an Alberta Innovates Health Solutions Scientist and Alberta Innovates Technology Futures Strategic Chair in (Bio)Molecular Simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Baoukina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baoukina, S., Tieleman, D.P. (2015). Computer Simulations of Phase Separation in Lipid Bilayers and Monolayers. In: Owen, D. (eds) Methods in Membrane Lipids. Methods in Molecular Biology, vol 1232. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1752-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1752-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1751-8

  • Online ISBN: 978-1-4939-1752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics