Skip to main content

Analysis of Human Hyaluronan Synthase Gene Transcriptional Regulation and Downstream Hyaluronan Cell Surface Receptor Mobility in Myofibroblast Differentiation

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1229))

Abstract

The ubiquitous extracellular glycosaminoglycan hyaluronan (HA) is a polymer composed of repeated disaccharide units of alternating d-glucuronic acid and d-N-acetylglucosamine residues linked via alternating β-1,4 and β-1,3 glycosidic bonds. Emerging data continue to reveal functions attributable to HA in a variety of physiological and pathological contexts. Defining the mechanisms regulating expression of the human hyaluronan synthase (HAS) genes that encode the corresponding HA-synthesizing HAS enzymes is therefore important in the context of HA biology in health and disease. We describe here methods to analyze transcriptional regulation of the HAS and HAS2-antisense RNA 1 genes. Elucidation of mechanisms of HA interaction with receptors such as the cell surface molecule CD44 is also key to understanding HA function. To this end, we provide protocols for fluorescent recovery after photobleaching analysis of CD44 membrane dynamics in the process of fibroblast to myofibroblast differentiation, a phenotypic transition that is common to the pathology of fibrosis of large organs such as the liver and kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spicer AP, Seldin MF, Olsen AS et al (1997) Chromosomal localization of the human and mouse hyaluronan synthase genes. Genomics 41:493–497

    Article  CAS  PubMed  Google Scholar 

  2. Sayo T, Sugiyama Y, Takahashi Y et al (2002) Hyaluronan synthase 3 regulates hyaluronan synthesis in cultured human keratinocytes. J Invest Dermatol 118:43–48

    Article  CAS  PubMed  Google Scholar 

  3. Monslow J, Williams JD, Norton N et al (2003) The human hyaluronan synthase genes: genomic structures, proximal promoters and polymorphic microsatellite markers. Int J Biochem Cell Biol 35:1272–1283

    Article  CAS  PubMed  Google Scholar 

  4. Chao H, Spicer AP (2005) Natural antisense mRNAs to hyaluronan synthase 2 inhibit hyaluronan biosynthesis and cell proliferation. J Biol Chem 280:27513–27522

    Article  CAS  PubMed  Google Scholar 

  5. Dobzhansky T (1964) Biology, molecular and organismic. Am Zool 4:443–452

    CAS  PubMed  Google Scholar 

  6. Weigel PH, DeAngelis PL (2007) Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282:36777–36781

    Article  CAS  PubMed  Google Scholar 

  7. Weigel PH, Hascall VC, Tammi M (1997) Hyaluronan synthases. J Biol Chem 272:13997–14000

    Article  CAS  PubMed  Google Scholar 

  8. Itano N, Sawai T, Yoshida M et al (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274:25085–25092

    Article  CAS  PubMed  Google Scholar 

  9. Rilla K, Oikari S, Jokela TA et al (2013) Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3. J Biol Chem 288:5973–5983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Michael DR, Phillips AO, Krupa A et al (2011) The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J Biol Chem 286:19523–19532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tammi RH, Passi AG, Rilla K (2011) Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 278:1419–1428

    Article  CAS  PubMed  Google Scholar 

  12. Vigetti D, Viola M, Karousou E et al (2014) Metabolic control of hyaluronan synthases. Matrix Biol 35:8–13

    Google Scholar 

  13. Yamada Y, Itano N, Hata K-I et al (2004) Differential regulation by IL-1beta and EGF of expression of three different hyaluronan synthases in oral mucosal epithelial cells and fibroblasts and dermal fibroblasts: quantitative analysis using real-time RT-PCR. J Invest Dermatol 122:631–639

    Article  CAS  PubMed  Google Scholar 

  14. Monslow J, Williams JD, Guy CA et al (2004) Identification and analysis of the promoter region of the human hyaluronan synthase 2 gene. J Biol Chem 279:20576–20581

    Article  CAS  PubMed  Google Scholar 

  15. Monslow J, Williams JD, Fraser DJ et al (2006) Sp1 and Sp3 mediate constitutive transcription of the human hyaluronan synthase 2 gene. J Biol Chem 281:18043–18050

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Neville RD, Michael DR et al (2012) Identification and analysis of the human hyaluronan synthase 1 gene promoter reveals Smad3- and Sp3-mediated transcriptional induction. Matrix Biol 31:373–379

    Article  PubMed  Google Scholar 

  17. Saavalainen K, Tammi MI, Bowen T et al (2007) Integration of the activation of the human hyaluronan synthase 2 gene promoter by common co-factors of the transcription factors RAR and NF-κB. J Biol Chem 282:11530–11539

    Article  CAS  PubMed  Google Scholar 

  18. Lauer-Fields JL, Malkar NB, Richet G et al (2003) Melanoma cell CD44 interaction with the alpha 1(IV) 1263–1277 region from basement membrane collagen is modulated by ligand glycosylation. J Biol Chem 278:14321–14330

    Article  CAS  PubMed  Google Scholar 

  19. Marrero-Diaz R, Bravo-Cordero JJ, Megías D et al (2009) Polarized MT1-MMP-CD44 interaction and CD44 cleavage during cell retraction reveal an essential role for MT1-MMP in CD44-mediated invasion. Cell Motil Cytoskeleton 66:48–61

    Article  CAS  PubMed  Google Scholar 

  20. Meran S, Luo DD, Simpson RM et al (2011) Hyaluronan facilitates transforming growth factor-beta1-dependent proliferation via CD44 and epidermal growth factor receptor interaction. J Biol Chem 286:17618–17630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Midgley AC, Rogers M, Hallett MB et al (2013) Transforming growth factor-beta1 (TGF-beta1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 288:14824–14838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Simpson RM, Wells A, Thomas DW et al (2010) Aging fibroblasts resist phenotypic maturation because of impaired hyaluronan-dependent CD44/epidermal growth factor receptor signaling. Am J Pathol 176:1215–1228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Webber J, Meran S, Steadman R et al (2009) Hyaluronan orchestrates transforming growth factor-beta1-dependent maintenance of myofibroblast phenotype. J Biol Chem 284:9083–9092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Midgley AC, Bowen T, Phillips AO et al (2014) MicroRNA-7 inhibition rescues age-associated loss of EGF receptor and hyaluronan (HA)-dependent differentiation in fibroblasts. Aging Cell 13:235–244

    Google Scholar 

  25. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  26. Speight G, Guy CA, Bowen T et al (1997) Exclusion of CAG/CTG trinucleotide repeat loci which map to chromosome 4 in bipolar disorder and schizophrenia. Am J Med Genet 74:204–206

    Article  CAS  PubMed  Google Scholar 

  27. Axelrod D, Koppel DE, Schlessinger J et al (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by funding from the Medical Research Council, UK, and Kidney Wales Foundation. We thank our colleagues Dr. Robert H. Jenkins and Dr. John Martin for their expert comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Bowen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Midgley, A.C., Bowen, T. (2015). Analysis of Human Hyaluronan Synthase Gene Transcriptional Regulation and Downstream Hyaluronan Cell Surface Receptor Mobility in Myofibroblast Differentiation. In: Balagurunathan, K., Nakato, H., Desai, U. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 1229. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1714-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1714-3_47

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1713-6

  • Online ISBN: 978-1-4939-1714-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics