Skip to main content

Role of Opioid Receptors in the Reinstatement of Opioid-Seeking Behavior: An Overview

  • Protocol
  • First Online:
Opioid Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1230))

Abstract

Opioid abuse in humans is characterized by discontinuous periods of drug use and abstinence. With time, the probability of falling into renewed drug consumption becomes particularly high and constitutes a considerable problem in the management of heroin addicts. The major problem in the treatment of opioid dependence still remains the occurrence of relapse, to which stressful life events, renewed use of heroin, and exposure to drug-associated environmental cues are all positively correlated. To study the neurobiology of relapse, many research groups currently use the reinstatement animal model, which greatly contributed to disentangle the mechanisms underlying relapse to drug-seeking in laboratory animals. The use of this model is becoming increasingly popular worldwide, and new versions have been recently developed to better appreciate the differential contribution of each opioid receptor subtype to the relapse phenomenon. In this chapter we review the state of the art of our knowledge on the specific role of the opioid receptors as unrevealed by the reinstatement animal model of opioid-seeking behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nation Office on Drugs and Crime (UNODC) (2013) World drug report. p. 18

    Google Scholar 

  2. Epstein DH, Preston KL, Stewart J et al (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology 189:1–16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    Article  PubMed  CAS  Google Scholar 

  4. Arnold JM, Roberts DC (1997) A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 57:441–447

    Article  PubMed  CAS  Google Scholar 

  5. Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54:1–42

    Article  PubMed  CAS  Google Scholar 

  6. Mello NK, Mendelson JH, Bree MP (1981) Naltrexone effects on morphine and food self-administration in morphine-dependent rhesus monkeys. J Pharmacol Exp Ther 218:550–557

    PubMed  CAS  Google Scholar 

  7. Mello NK, Bree MP, Mendelson JH (1983) Comparison of buprenorphine and methadone effects on opiate self-administration in primates. J Pharmacol Exp Ther 225:378–386

    PubMed  CAS  Google Scholar 

  8. Matthes HW, Maldonado R, Simonin F et al (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383:819–823

    Article  PubMed  CAS  Google Scholar 

  9. Liang J, Li Y, Ping X et al (2006) The possible involvement of endogenous ligands for mu-, delta- and kappa-opioid receptors in modulating morphine-induced CPP expression in rats. Peptides 27:3307–3314

    Article  PubMed  CAS  Google Scholar 

  10. Le Merrer J, Becker JA, Befort K et al (2009) Reward processing by the opioid system in the brain. Physiol Rev 89:1379–1412

    Article  PubMed  Google Scholar 

  11. Lutz PE, Kieffer BL (2013) The multiple facets of opioid receptor function: implications for addiction. Curr Opin Neurobiol 23:473–479

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. De Wit H, Stewart J (1983) Drug reinstatement of heroin-reinforced responding in the rat. Psychopharmacology 79:29–31

    Article  PubMed  Google Scholar 

  13. Stewart J (1983) Conditioned and unconditioned drug effects in relapse to opiate and stimulant drug self-administration. Prog Neuropsychopharmacol Biol Psychiatry 7:591–597

    Article  PubMed  CAS  Google Scholar 

  14. Fattore L, Spano MS, Cossu G et al (2003) Cannabinoid mechanism in reinstatement of heroin-seeking after a long period of abstinence in rats. Eur J Neurosci 17:1723–1726

    Article  PubMed  CAS  Google Scholar 

  15. Fattore L, Spano S, Cossu G et al (2005) Cannabinoid CB(1) antagonist SR 141716A attenuates reinstatement of heroin self-administration in heroin-abstinent rats. Neuropharmacology 48:1097–1104

    Article  PubMed  CAS  Google Scholar 

  16. Spano MS, Fattore L, Fratta W et al (2007) The GABAB receptor agonist baclofen prevents heroin-induced reinstatement of heroin-seeking behavior in rats. Neuropharmacology 52:1555–1562

    Article  PubMed  CAS  Google Scholar 

  17. Parker LA, Mcdonald RV (2000) Reinstatement of both a conditioned place preference and a conditioned place aversion with drug primes. Pharmacol Biochem Behav 66:559–561

    Article  PubMed  CAS  Google Scholar 

  18. Ribeiro Do Couto B, Aguilar MA et al (2003) Reinstatement of morphine-induced conditioned place preference in mice by priming injections. Neural Plast 10:279–290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Mueller D, Perdikaris D, Stewart J (2002) Persistence and drug-induced reinstatement of a morphine-induced conditioned place preference. Behav Brain Res 136:389–397

    Article  PubMed  CAS  Google Scholar 

  20. Ribeiro Do Couto B, Aguilar MA et al (2005) Long-lasting rewarding effects of morphine induced by drug primings. Brain Res 1050:53–63

    Article  PubMed  CAS  Google Scholar 

  21. Stewart J, Wise RA (1992) Reinstatement of heroin self-administration habits: morphine prompts and naltrexone discourages renewed responding after extinction. Psychopharmacology 108:79–84

    Article  PubMed  CAS  Google Scholar 

  22. Stewart J (1984) Reinstatement of heroin and cocaine self-administration behavior in the rat by intracerebral application of morphine in the ventral tegmental area. Pharmacol Biochem Behav 20:917–923

    Article  PubMed  CAS  Google Scholar 

  23. Shaham Y, Stewart J (1996) Effects of opioid and dopamine receptor antagonists on relapse induced by stress and re-exposure to heroin in rats. Psychopharmacology 125:385–391

    Article  PubMed  CAS  Google Scholar 

  24. Shaham Y, Rajabi H, Stewart J (1996) Relapse to heroin-seeking in rats under opioid maintenance: the effects of stress, heroin priming, and withdrawal. J Neurosci 16:1957–1963

    PubMed  CAS  Google Scholar 

  25. Leri F, Rizos Z (2005) Reconditioning of drug-related cues: a potential contributor to relapse after drug reexposure. Pharmacol Biochem Behav 80:621–630

    Article  PubMed  CAS  Google Scholar 

  26. Liu H, Lai M, Zhou X et al (2012) Galantamine attenuates the heroin seeking behaviors induced by cues after prolonged withdrawal in rats. Neuropharmacology 62:2515–2521

    Article  PubMed  CAS  Google Scholar 

  27. Zhang F, Zhou W, Liu H et al (2005) Increased c-Fos expression in the medial part of the lateral habenula during cue-evoked heroin-seeking in rats. Neurosci Lett 386:133–137

    Article  PubMed  CAS  Google Scholar 

  28. Berger AC, Whistler JL (2011) Morphine-induced mu opioid receptor trafficking enhances reward yet prevents compulsive drug use. EMBO Mol Med 3:385–397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Finn AK, Whistler JL (2001) Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 32:829–839

    Article  PubMed  CAS  Google Scholar 

  30. Nathan PJ, Bush MA, Tao WX et al (2012) Multiple-dose safety, pharmacokinetics, and pharmacodynamics of the μ-opioid receptor inverse agonist GSK1521498. J Clin Pharmacol 52:1456–1467

    Article  PubMed  CAS  Google Scholar 

  31. Cambridge VC, Ziauddeen H, Nathan PJ et al (2013) Neural and behavioral effects of a novel mu opioid receptor antagonist in binge-eating obese people. Biol Psychiatry 73:887–894

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Giuliano C, Robbins TW, Wille DR et al (2013) Attenuation of cocaine and heroin seeking by μ-opioid receptor antagonism. Psychopharmacology 227:137–147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Cummins E, Boughner E, Leri F (2014) Cue-induced renewal of heroin place preference: involvement of the basolateral amygdala. Neuroreport 25:297–302

    PubMed  CAS  Google Scholar 

  34. Lu L, Chen H, Su W et al (2005) Role of withdrawal in reinstatement of morphine-conditioned place preference. Psychopharmaocology 181:90–100

    Article  CAS  Google Scholar 

  35. Pfeiffer A, Brantl V, Herz A et al (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233:774–776

    Article  PubMed  CAS  Google Scholar 

  36. Carey AN, Borozny K, Aldrich JV et al (2007) Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid receptor antagonist arodyn. Eur J Pharmacol 569:84–89

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Redila VA, Chavkin C (2008) Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology 200:59–70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Land BB, Bruchas MR, Schattauer S et al (2009) Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proc Natl Acad Sci U S A 106:19168–19173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Zhou Y, Leri F, Grella SL et al (2013) Involvement of dynorphin and kappa opioid receptor in yohimbine-induced reinstatement of heroin seeking in rats. Synapse 67:358–361

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Bruchas MR, Land BB, Chavkin C (2010) The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 1314:44–55

    Article  PubMed  CAS  Google Scholar 

  41. Cordery SF, Taverner A, Ridzwan IE et al (2012) A non-rewarding, non-aversive buprenorphine/naltrexone combination attenuates drug-primed reinstatement to cocaine and morphine in rats in a conditioned place preference paradigm. Addict Biol. doi:10.1111/adb.12020

    PubMed  Google Scholar 

  42. Abdelhamid EE, Sultana M, Portoghese PS et al (1991) Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther 258:299–303

    PubMed  CAS  Google Scholar 

  43. Zhu Y, King MA, Schuller AG et al (1999) Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 24:243–252

    Article  PubMed  CAS  Google Scholar 

  44. Ciccocioppo R, Martin-Fardon R, Weiss F (2002) Effect of selective blockade of mu(1) or delta opioid receptors on reinstatement of alcohol-seeking behavior by drug-associated stimuli in rats. Neuropsychopharmacology 27:391–399

    Article  PubMed  CAS  Google Scholar 

  45. Marinelli PW, Funk D, Harding S et al (2009) Roles of opioid receptor subtypes in mediating alcohol-seeking induced by discrete cues and context. Eur J Neurosci 30:671–678

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kotlinska JH, Gibula-Bruzda E, Pachuta A et al (2010) Influence of new deltorphin analogues on reinstatement of cocaine-induced conditioned place preference in rats. Behav Pharmacol 21:638–648

    Article  PubMed  CAS  Google Scholar 

  47. Le Merrer J, Faget L, Matifas A et al (2012) Cues predicting drug or food reward restore morphine-induced place conditioning in mice lacking delta opioid receptors. Psycho-pharmacology 223:99–106

    Article  Google Scholar 

  48. Lenard NR, Daniels DJ, Portoghese PS et al (2007) Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. Eur J Pharmacol 566:75–82

    Article  PubMed  CAS  Google Scholar 

  49. Chefer VI, Shippenberg TS (2009) Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice. Neuropsychopharmacology 34:887–898

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Le Merrer J, Plaza-Zabala A, Del Boca C et al (2011) Deletion of the delta opioid receptor gene impairs place conditioning but preserves morphine reinforcement. Biol Psychiatry 69:700–703

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Fratta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fattore, L., Fadda, P., Antinori, S., Fratta, W. (2015). Role of Opioid Receptors in the Reinstatement of Opioid-Seeking Behavior: An Overview. In: Spampinato, S. (eds) Opioid Receptors. Methods in Molecular Biology, vol 1230. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1708-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1708-2_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1707-5

  • Online ISBN: 978-1-4939-1708-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics