Skip to main content

The Molecular Basis of Sour Sensing in Mammals

  • Chapter
  • First Online:
Molecular Genetics of Dysregulated pH Homeostasis

Abstract

Taste plays an important role for organisms in determining the properties of ingested substances by conveying important information on five basic taste modalities—sweet, salty, sour, bitter, and umami. Sweet, salty, and umami taste modalities convey the carbohydrate, electrolyte, and glutamate content of food, indicating its desirability and stimulating appetitive responses. Sour and bitter modalities, on the other hand, convey the presence of acidity and potential toxins, respectively, stimulating aversive responses to such tastes. In recent years, the receptors mediating sweet, bitter, and umami tastes have been identified as members of the T1R and T2R G-protein-coupled receptor (GPCR) families, while the molecular mechanisms underlying sour taste have yet to be clearly elucidated. We review aspects of perception and anatomy of acid taste, and explore the various molecules and mechanisms proposed to mediate the detection of sour stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASIC:

Acid-sensing ion channel

Car4:

Carbonic anhydrase 4

CN:

Cranial nerve

CT:

Chorda tympani

CvP:

Circumvallate papillae

DEG/ENaC:

Caenorhabditis elegans degenerin/human epithelium amiloride-sensitive Na+ channel

DTA:

Diphtheria toxin A fragment

FoP:

Foliate papillae

FuP:

Fungiform papillae

GAD:

Glutamate decarboxylase

GG:

Geniculate ganglion

GN:

Glossopharyngeal

GPCR:

G protein-coupled receptors

GSP:

Greater superficial petrosal

HCN:

Hyperpolarization-activated cyclic nucleotide-gated channel

K2P:

Two-pore domain K + channels

NPG:

Nodose/petrosal ganglion

NST:

Nucleus of the solitary tract

PbN:

Parabrachial nucleus

Pkd1l3:

Polycystic kidney disease 1-like 3

Pkd2l1:

Polycystic kidney disease 2-like 1

SP:

Substance P

TRC:

Taste receptor cell

TRPV1:

Transient receptor potential, vanilloid receptor subtype-1

WGA:

Wheat germ agglutinin

References

  1. Baeyens F, Vansteenwegen D, De Houwer J, Crombez G (1996) Observational conditioning of food valence in humans. Appetite 27(3):235–250. doi:10.1006/appe.1996.0049

    Article  PubMed  CAS  Google Scholar 

  2. Bartel DL, Sullivan SL, Lavoie EG, Sevigny J, Finger TE (2006) Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J Comp Neurol ­497(1):1–12. doi:10.1002/cne.20954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Ben-Shahar Y (2011) Sensory functions for degenerin/epithelial sodium channels (DEG/ENaC). Adv Genet 76:1–26. doi:10.1016/B978–0-12–386481-9.00001–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Bianchi L, Driscoll M (2002) Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 34(3):337–340

    Article  PubMed  CAS  Google Scholar 

  5. Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated ­cation channels: from genes to function. Physiol Rev 89(3):847–885. doi:10.1152/physrev.00029.2008

    Article  PubMed  CAS  Google Scholar 

  6. Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, Zuker CS (2009) The taste of carbonation. Science 326(5951):443–445. doi:10.1126/science.1174601

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Chang RB, Waters H, Liman ER (2010) A proton current drives action potentials in genetically identified sour taste cells. Proc Natl Acad Sci U S A 107(51):22320–22325. doi:10.1073/pnas.1013664107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190(3):285–296. doi:10.1083/jcb.201003144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Chavez RA, Gray AT, Zhao BB, Kindler CH, Mazurek MJ, Mehta Y, Forsayeth JR, Yost CS (1999) TWIK-2, a new weak inward rectifying member of the tandem pore domain ­potassium channel family. J Biol Chem 274(12):7887–7892

    Article  PubMed  CAS  Google Scholar 

  10. Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC (2004) Morphologic ­characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J Comp Neurol 468(3):311–321. doi:10.1002/cne.10963

    Article  PubMed  CAS  Google Scholar 

  11. Damak S, Mosinger B, Margolskee RF (2008) Transsynaptic transport of wheat germ ­agglutinin expressed in a subset of type II taste cells of transgenic mice. BMC Neurosci 9:96. doi:10.1186/1471–2202-9–96

    Article  PubMed  PubMed Central  Google Scholar 

  12. DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N (2006) Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci 26(15):3971–3980. doi:10.1523/JNEUROSCI.0515–06.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310(5753):1495–1499. doi:10.1126/science.1118435

    Article  PubMed  CAS  Google Scholar 

  14. Ganzevles PG, Kroeze JH (1987a) Effects of adaptation and cross-adaptation to common ions on sourness intensity. Physiol Behav 40(5):641–646

    Article  CAS  Google Scholar 

  15. Ganzevles PGJ, Kroeze JHA (1987b) The sour taste of acids. The hydrogen ion and the undissociated acid as sour agents. Chem Senses 12(4):563–576. doi:10.1093/chemse/12.4.563

    Article  CAS  Google Scholar 

  16. Harvey RB (1920) The relation between the total acidity, the concentration of the hydrogen ion, and the taste of acid solutions. J Am Chem Soc 42(4):712–714. doi:10.1021/ja01449a005

    Article  CAS  Google Scholar 

  17. Hayato R, Ohtubo Y, Yoshii K (2007) Functional expression of ionotropic purinergic receptors on mouse taste bud cells. J Physiol 584(Pt 2):473–488. doi:10.1113/jphysiol.2007.138370

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Hirata K, Miyahara H, Kanaseki T (1988) Substance-P-containing fibers in the incisive papillae of the rat hard palate. Light- and electron-microscopic immunohistochemical study. Acta Anat (Basel) 132(3):197–204

    Article  CAS  Google Scholar 

  19. Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y, Matsunami H, Ninomiya Y (2011) Sour taste responses in mice lacking PKD channels. PLoS ONE 6(5):e20007. doi:10.1371/journal.pone.0020007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317(5840):953–957. doi:10.1126/science.1144233

    Article  PubMed  CAS  Google Scholar 

  21. Huang YJ, Maruyama Y, Lu KS, Pereira E, Plonsky I, Baur JE, Wu D, Roper SD (2005) Mouse taste buds use serotonin as a neurotransmitter. J Neurosci 25(4):843–847. doi:10.1523/JNEUROSCI.4446–04.2005

    Article  PubMed  CAS  Google Scholar 

  22. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJ, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442(7105):934–938. doi:10.1038/nature05084

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Huang YA, Maruyama Y, Stimac R, Roper SD (2008) Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J Physiol 586(Pt 12):2903–2912. doi:10.1113/jphysiol.2008.151233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Huang YA, Dando R, Roper SD (2009) Autocrine and paracrine roles for ATP and serotonin in mouse taste buds. J Neurosci 29(44):13909–13918. doi:10.1523/JNEUROSCI.2351–09.2009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Huque T, Cowart BJ, Dankulich-Nagrudny L, Pribitkin EA, Bayley DL, Spielman AI, ­Feldman RS, Mackler SA, Brand JG (2009) Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. PLoS ONE 4(10):e7347. doi:10.1371/journal.pone.0007347

    Article  PubMed  PubMed Central  Google Scholar 

  26. Inada H, Kawabata F, Ishimaru Y, Fushiki T, Matsunami H, Tominaga M (2008) ­Off-response property of an acid-activated cation channel complex PKD1L3-PKD2L1. EMBO Rep 9(7):690–697. doi:10.1038/embor.2008.89

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Ishimaru Y (2009) Molecular mechanisms of taste transduction in vertebrates. Odontology 97(1):1–7. doi:10.1007/s10266–008-0095-y

    Article  PubMed  CAS  Google Scholar 

  28. Ishimaru Y, Matsunami H (2009) Transient receptor potential (TRP) channels and taste ­sensation. J Dent Res 88(3):212–218. doi:10.1177/0022034508330212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient ­receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste ­receptor. Proc Natl Acad Sci U S A 103(33):12569–12574. doi:10.1073/pnas.0602702103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Ishimaru Y, Katano Y, Yamamoto K, Akiba M, Misaka T, Roberts RW, Asakura T, Matsunami H, Abe K (2010) Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae. FASEB J 24(10):4058–4067. doi:10.1096/fj.10–162925

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Johanningsmeiner SD, McFeeters RF, Drake M (2005) A hypothesis for the chemical ­basis for perception of sour taste. J Food Sci 70(2):R44–R48. doi:10.1111/j.1365–2621.2005.tb07111.x

    Article  Google Scholar 

  32. Kawaguchi H, Yamanaka A, Uchida K, Shibasaki K, Sokabe T, Maruyama Y, Yanagawa Y, Murakami S, Tominaga M (2010) Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells. J Biol Chem 285(23):17277–17281. doi:10.1074/jbc.C110.132944

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Kinnamon SC (2012) Taste receptor signalling—from tongues to lungs. Acta Physiol (Oxf) 204(2):158–168. doi:10.1111/j.1748–1716.2011.02308.x

    Article  CAS  Google Scholar 

  34. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15(5):1004–1011

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain ­potassium channels. Am J Physiol Renal Physiol 279(5):F793–F801

    PubMed  CAS  Google Scholar 

  36. Lin W, Burks CA, Hansen DR, Kinnamon SC, Gilbertson TA (2004) Taste receptor cells express pH-sensitive leak K+ channels. J Neurophysiol 92(5):2909–2919. doi:10.1152/jn.01198.2003

    Article  PubMed  CAS  Google Scholar 

  37. Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282(24):17325–17329. doi:10.1074/jbc.R700011200

    Article  PubMed  CAS  Google Scholar 

  38. Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM (2009) The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64(6):885–897. doi:10.1016/j.neuron.2009.11.007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K (2003) Proton-sensing G-protein-coupled receptors. Nature 425(6953):93–98. doi:10.1038/nature01905

    Article  PubMed  CAS  Google Scholar 

  40. Lyall V, Alam RI, Phan DQ, Ereso GL, Phan TH, Malik SA, Montrose MH, Chu S, Heck GL, Feldman GM, DeSimone JA (2001) Decrease in rat taste receptor cell ­intracellular pH is the proximate stimulus in sour taste transduction. Am J Physiol Cell Physiol 281(3):C1005–C1013

    PubMed  CAS  Google Scholar 

  41. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274(38):26691–26696

    Article  PubMed  CAS  Google Scholar 

  42. Makhlouf GBA (1972) Kinetics of the taste response to chemical stimulation: a theory of acid taste in man. Gastroenterology 63(1):67–75

    CAS  Google Scholar 

  43. Mantyh PW, Rogers SD, Honore P, Allen BJ, Ghilardi JR, Li J, Daughters RS, Lappi DA, ­Wiley RG, Simone DA (1997) Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278(5336):275–279

    Article  PubMed  CAS  Google Scholar 

  44. Medler KF, Margolskee RF, Kinnamon SC (2003) Electrophysiological characterization of voltage-gated currents in defined taste cell types of mice. J Neurosci 23(7):2608–2617

    PubMed  CAS  Google Scholar 

  45. Munsch T, Pape HC (1999) Modulation of the hyperpolarization-activated cation current of rat thalamic relay neurones by intracellular pH. J Physiol 519(Pt 2):493–504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Nagy JI, Goedert M, Hunt SP, Bond A (1982) The nature of the substance P-containing nerve fibres in taste papillae of the rat tongue. Neuroscience 7(12):3137–3151

    Article  PubMed  CAS  Google Scholar 

  47. Nakamura K, Norgren R (1995) Sodium-deficient diet reduces gustatory activity in the ­nucleus of the solitary tract of behaving rats. Am J Physiol 269(3 Pt 2):R647–R661

    PubMed  CAS  Google Scholar 

  48. Nelson TM, Lopezjimenez ND, Tessarollo L, Inoue M, Bachmanov AA, Sullivan SL (2010) Taste function in mice with a targeted mutation of the pkd1l3 gene. Chem Senses 35(7):565–577. doi:10.1093/chemse/bjq070

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Ninomiya Y, Funakoshi M (1988) Amiloride inhibition of responses of rat single chorda tympani fibers to chemical and electrical tongue stimulations. Brain Res 451(1–2):319–325

    Article  PubMed  CAS  Google Scholar 

  50. Ohmoto M, Matsumoto I, Yasuoka A, Yoshihara Y, Abe K (2008) Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells. Mol Cell Neurosci 38(4):505–517. doi:10.1016/j.mcn.2008.04.011

    Article  PubMed  CAS  Google Scholar 

  51. Ohmoto M, Maeda N, Abe K, Yoshihara Y, Matsumoto I (2010) Genetic tracing of the ­neural pathway for bitter taste in t2r5-WGA transgenic mice. Biochem Biophys Res Commun 400(4):734–738. doi:10.1016/j.bbrc.2010.08.139

    Article  PubMed  CAS  Google Scholar 

  52. Oka Y, Butnaru M, von Buchholtz L, Ryba NJ, Zuker CS (2013) High salt recruits aversive taste pathways. Nature 494(7438):472–475. doi:10.1038/nature11905

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Pan Z, Yang H, Reinach PS (2011) Transient receptor potential (TRP) gene superfamily encoding cation channels. Hum Genom 5(2):108–116

    Article  CAS  Google Scholar 

  54. Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32(6):1071–1083

    Article  PubMed  CAS  Google Scholar 

  55. Richter TA, Caicedo A, Roper SD (2003) Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J Physiol 547(Pt 2):475–483. doi:10.1113/jphysiol.2002.033811

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Richter TA, Dvoryanchikov GA, Chaudhari N, Roper SD (2004a) Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J Neurophysiol 92(3):1928–1936. doi:10.1152/jn.00273.2004

    Article  CAS  Google Scholar 

  57. Richter TA, Dvoryanchikov GA, Roper SD, Chaudhari N (2004b) Acid-sensing ion channel-2 is not necessary for sour taste in mice. J Neurosci 24(16):4088–4091. doi:10.1523/JNEUROSCI.0653–04.2004

    Article  CAS  Google Scholar 

  58. Roper SD (2007) Signal transduction and information processing in mammalian taste buds. Pflugers Arch 454(5):759–776. doi:10.1007/s00424–007-0247-x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Saper CB (2000) Hypothalamic connections with the cerebral cortex. Prog Brain Res 126:39–48. doi:10.1016/S0079–6123(00)26005–6

    Article  PubMed  CAS  Google Scholar 

  60. Scalera G, Spector AC, Norgren R (1995) Excitotoxic lesions of the parabrachial ­nuclei ­prevent conditioned taste aversions and sodium appetite in rats. Behav Neurosci 109(5):997–1008

    Article  PubMed  CAS  Google Scholar 

  61. Sowalsky RA, Noble AC (1998) Comparison of the effects of concentration, pH and anion species on astringency and sourness of organic acids. Chem Senses 23(3):343–349

    Article  PubMed  CAS  Google Scholar 

  62. Spector AC, Scalera G, Grill HJ, Norgren R (1995) Gustatory detection thresholds after ­parabrachial nuclei lesions in rats. Behav Neurosci 109(5):939–954

    Article  PubMed  CAS  Google Scholar 

  63. Stevens DR, Seifert R, Bufe B, Muller F, Kremmer E, Gauss R, Meyerhof W, Kaupp UB, Lindemann B (2001) Hyperpolarization-activated channels HCN1 and HCN4 mediate ­responses to sour stimuli. Nature 413(6856):631–635. doi:10.1038/35098087

    Article  PubMed  CAS  Google Scholar 

  64. Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, Petrovic S (2010) Deletion of the pH sensor GPR4 decreases renal acid excretion. J Am Soc Nephrol 21(10):1745–1755. doi:10.1681/ASN.2009050477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Sutherland SP, Benson CJ, Adelman JP, McCleskey EW (2001) Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci U S A 98(2):711–716. doi:10.1073/pnas.011404498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Talley EM, Sirois JE, Lei Q, Bayliss DA (2003) Two-pore-Domain (KCNK) potassium ­channels: dynamic roles in neuronal function. Neuroscientist 9(1):46–56

    Article  PubMed  CAS  Google Scholar 

  67. Travers SP, Norgren R (1995) Organization of orosensory responses in the nucleus of the solitary tract of rat. J Neurophysiol 73(6):2144–2162

    PubMed  CAS  Google Scholar 

  68. Ugawa S (2003) Identification of sour-taste receptor genes. Anat Sci Int 78(4):205–210. doi:10.1046/j.0022–7722.2003.00062.x

    Article  PubMed  CAS  Google Scholar 

  69. Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 110(8):1185–1190. doi:10.1172/JCI15709

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Ugawa S, Ueda T, Yamamura H, Nagao M, Shimada S (2005) Coexpression of vanilloid receptor subtype-1 and acid-sensing ion channel genes in the human trigeminal ganglion neurons. Chem Senses 30(Suppl 1):i195. doi:10.1093/chemse/bjh181

    Article  PubMed  Google Scholar 

  71. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386(6621):173–177. doi:10.1038/386173a0

    Article  PubMed  CAS  Google Scholar 

  72. Xie J, Price MP, Berger AL, Welsh MJ (2002) DRASIC contributes to pH-gated currents in large dorsal root ganglion sensory neurons by forming heteromultimeric channels. J Neurophysiol 87(6):2835–2843

    PubMed  CAS  Google Scholar 

  73. Yamamoto K, Ishimaru Y, Ohmoto M, Matsumoto I, Asakura T, Abe K (2011) Genetic tracing of the gustatory neural pathway originating from Pkd1l3-expressing type III taste cells in circumvallate and foliate papillae. J Neurochem 119(3):497–506. doi:10.1111/j.1471–4159.2011.07443.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Yamamoto T, Kawamura Y (1975) Dual innervation of the foliate papillae of the rat: an ­electrophysiological study. Chem Senses 1(3):241–244. doi:10.1093/chemse/1.3.241

    Article  Google Scholar 

  75. Yang LV, Radu CG, Roy M, Lee S, McLaughlin J, Teitell MA, Iruela-Arispe ML, Witte ON (2007) Vascular abnormalities in mice deficient for the G protein-coupled receptor GPR4 that functions as a pH sensor. Mol Cell Biol 27(4):1334–1347. doi:10.1128/MCB.01909–06

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Yang R, Montoya A, Bond A, Walton J, Kinnamon JC (2012) Immunocytochemical analysis of P2X2 in rat circumvallate taste buds. BMC Neurosci 13:51. doi:10.1186/1471–2202-13–51

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Yarmolinsky DA, Zuker CS, Ryba NJ (2009) Common sense about taste: from mammals to insects. Cell 139(2):234–244. doi:10.1016/j.cell.2009.10.001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Yoshihara Y (2002) Visualizing selective neural pathways with WGA transgene: combination of neuroanatomy with gene technology. Neurosci Res 44(2):133–140

    Article  PubMed  CAS  Google Scholar 

  79. Yoshihara Y, Mizuno T, Nakahira M, Kawasaki M, Watanabe Y, Kagamiyama H, Jishage K, Ueda O, Suzuki H, Tabuchi K, Sawamoto K, Okano H, Noda T, Mori K (1999) A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22(1):33–41

    Article  PubMed  CAS  Google Scholar 

  80. Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57(4):387–395. doi:10.1124/pr.57.4.13

    Article  PubMed  CAS  Google Scholar 

  81. Zong X, Stieber J, Ludwig A, Hofmann F, Biel M (2001) A single histidine residue determines the pH sensitivity of the pacemaker channel HCN2. J Biol Chem 276(9):6313–6319. doi:10.1074/jbc.M010326200

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Matsunami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ho, J., Matsunami, H., Ishimaru, Y. (2014). The Molecular Basis of Sour Sensing in Mammals. In: Chi, JT. (eds) Molecular Genetics of Dysregulated pH Homeostasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1683-2_3

Download citation

Publish with us

Policies and ethics