Skip to main content

Advertisement

Log in

Molecular mechanisms of taste transduction in vertebrates

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

An Erratum to this article was published on 02 August 2009

Abstract

Among the five senses, taste and olfaction play crucial roles in the detection of chemical substances in the environment and are referred to as chemical senses. In the past decade, much progress has been made in studies on molecular mechanisms of the gustatory system by methods such as those based on molecular and cellular biology, genetics, and bioinformatics. This review covers recent studies on taste receptors, intracellular signaling transduction in taste receptor cells, and taste coding at the periphery in vertebrates from fish to mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe K. Studies on taste: molecular biology and food science. Biosci Biotechnol Biochem 2008;72:1647–56.

    Article  PubMed  Google Scholar 

  2. Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature(Lond) 2006;444:288–94.

    Article  Google Scholar 

  3. Ishimaru Y, Matsunami H. Transient receptor potential (TRP) channels and taste sensation. J Dent Res (in revision).

  4. Murray RG. The ultrastructure of taste buds. In: Friedmann II, editor. Ultrastructure of sensory organs, vol I. New York: American Elsevier; 1973. p. 1–81.

    Google Scholar 

  5. Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 2005;310:1495–99.

    Article  PubMed  Google Scholar 

  6. Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS. Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 2007; 26:657–67.

    Article  PubMed  Google Scholar 

  7. Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD. The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci U S A 2007;104:6436–41.

    Article  PubMed  Google Scholar 

  8. Kataoka S, Yang R, Ishimaru Y, Matsunami H, Sevigny J, Kinnamon JC, Finger TE. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem Senses 2008;33:243–54.

    Article  PubMed  Google Scholar 

  9. Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 2002;277:1–4.

    Article  PubMed  Google Scholar 

  10. Lindemann B. Receptors and transduction in taste. Nature (Lond) 2001;413:219–25.

    Article  Google Scholar 

  11. Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 1999;96:541–51.

    Article  PubMed  Google Scholar 

  12. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS. An amino-acid taste receptor. Nature 2002;416:199–202.

    Article  PubMed  Google Scholar 

  13. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. Mammalian sweet taste receptors. Cell 2001;106:381–90.

    Article  PubMed  Google Scholar 

  14. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS. The receptors for mammalian sweet and umami taste. Cell 2003;115:255–66.

    Article  PubMed  Google Scholar 

  15. Montmayeur JP, Liberles SD, Matsunami H, Buck LB. A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 2001;4:492–98.

    PubMed  Google Scholar 

  16. Kitagawa M, Kusakabe Y, Miura H, Ninomiya Y, Hino A. Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem Biophys Res Commun 2001;283:236–42.

    Article  PubMed  Google Scholar 

  17. Max M, Shanker YG, Huang L, Rong M, Liu Z, Campagne F, Weinstein H, Damak S, Margolskee RF. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 2001;28:58–63.

    Article  PubMed  Google Scholar 

  18. Sainz E, Korley JN, Battey JF, Sullivan SL. Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 2001;77:896–903.

    Article  PubMed  Google Scholar 

  19. Bachmanov AA, Li X, Reed DR, Ohmen JD, Li S, Chen Z, Tordoff MG, de Jong PJ, Wu C, West DB, Chatterjee A, Ross DA, Beauchamp GK. Positional cloning of the mouse saccharin preference (Sac) locus. Chem Senses 2001;26:925–33.

    Article  PubMed  Google Scholar 

  20. Jiang P, Cui M, Zhao B, Snyder LA, Benard LM, Osman R, Margolskee RF, Max M. Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J Biol Chem 2005;280:34296–305.

    Article  PubMed  Google Scholar 

  21. Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci U S A 2004;101:14258–14263.

    Article  PubMed  Google Scholar 

  22. Koizumi A, Nakajima K, Asakura T, Morita Y, Ito K, Shmizu-Ibuka A, Misaka T, Abe K. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochem Biophys Res Commun 2007;358:585–9.

    Article  PubMed  Google Scholar 

  23. Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J Biol Chem 2004;279:45068–75.

    Article  PubMed  Google Scholar 

  24. Jiang P, Cui M, Zhao B, Snyder LA, Benard LM, Osman R, Max M, Margolskee RF. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem 2005;280:15238–46.

    Article  PubMed  Google Scholar 

  25. Winnig M, Bufe B, Meyerhof W. Valine 738 and lysine 735 in the fifth transmembrane domain of rTas1r3 mediate insensitivity towards lactisole of the rat sweet taste receptor. BMC Neurosci 2005;6:22.

    Article  PubMed  Google Scholar 

  26. Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R. The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 2006;12:4591–600.

    Article  PubMed  Google Scholar 

  27. Shi P, Zhang J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 2006;23:292–300.

    Article  PubMed  Google Scholar 

  28. Li X, Li W, Wang H, Cao J, Maehashi K, Huang L, Bachmanov AA, Reed DR, Legrand-Defretin V, Beauchamp GK, Brand JG. Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genet 2005;1:27–35.

    Article  PubMed  Google Scholar 

  29. Oike H, Nagai T, Furuyama A, Okada S, Aihara Y, Ishimaru Y, Marui T, Matsumoto I, Misaka T, Abe K. Characterization of ligands for fish taste receptors. J Neurosci 2007;27:5584–92.

    Article  PubMed  Google Scholar 

  30. Ishimaru Y, Okada S, Naito H, Nagai T, Yasuoka A, Matsumoto I, Abe K. Two families of candidate taste receptors in fishes. Mech Dev 2005;122:1310–21.

    Article  PubMed  Google Scholar 

  31. Ikeda K. New seasonings. Chem Senses 2002;27:847–9.

    Article  PubMed  Google Scholar 

  32. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A 2002;99:4692–6.

    Article  PubMed  Google Scholar 

  33. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. Cell 2000;100:693–702.

    Article  PubMed  Google Scholar 

  34. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ. T2Rs function as bitter taste receptors. Cell 2000;100:703–11.

    Article  PubMed  Google Scholar 

  35. Matsunami H, Montmayeur JP, Buck LB. A family of candidate taste receptors in human and mouse. Nature (Lond) 2000;404: 601–4.

    Article  Google Scholar 

  36. Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ. The receptors and coding logic for bitter taste. Nature (Lond) 2005;434:225–9.

    Article  Google Scholar 

  37. Sainz E, Cavenagh MM, Gutierrez J, Battey JF, Northup JK, Sullivan SL. Functional characterization of human bitter taste receptors. Biochem J 2007;403:537–43.

    Article  PubMed  Google Scholar 

  38. Maehashi K, Matano M, Wang H, Vo LA, Yamamoto Y, Huang L. Bitter peptides activate hTAS2Rs, the human bitter receptors. Biochem Biophys Res Commun 2008;365:851–5.

    Article  PubMed  Google Scholar 

  39. Behrens M, Brockhoff A, Kuhn C, Bufe B, Winnig M, Meyerhof W. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem Biophys Res Commun 2004;319:479–85.

    Article  PubMed  Google Scholar 

  40. Bufe B, Hofmann T, Krautwurst D, Raguse JD, Meyerhof W. The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nat Genet 2002;32:397–401.

    Article  PubMed  Google Scholar 

  41. Bufe B, Hofmann T, Krautwurst D, Raguse JD, Meyerhof W. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol 2005;15:322–7.

    Article  PubMed  Google Scholar 

  42. Kuhn C, Bufe B, Winnig M, Hofmann T, Frank O, Behrens M, Lewtschenko T, Slack JP, Ward CD, Meyerhof W. Bitter taste receptors for saccharin and acesulfame K. J Neurosci 2004;24: 10260–5.

    Article  PubMed  Google Scholar 

  43. Pronin AN, Xu H, Tang H, Zhang L, Li Q, Li X. Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Curr Biol 2007;17:1403–8.

    Article  PubMed  Google Scholar 

  44. Brockhoff A, Behrens M, Massarotti A, Appendino G, Meyerhof W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J Agric Food Chem 2007;55: 6236–43.

    Article  PubMed  Google Scholar 

  45. Pronin AN, Tang H, Connor J, Keung W. Identification of ligands for two human bitter T2R receptors. Chem Senses 2004;29:583–593.

    Article  PubMed  Google Scholar 

  46. Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 2003;299:1221–5.

    Article  PubMed  Google Scholar 

  47. Hisatsune C, Yasumatsu K, Takahashi-Iwanaga H, Ogawa N, Kuroda Y, Yoshida R, Ninomiya Y, Mikoshiba K. Abnormal taste perception in mice lacking the type 3 inositol 1,4,5-trisphosphate receptor. J Biol Chem 2007;282:37225–31.

    Article  PubMed  Google Scholar 

  48. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 2003;112:293–301.

    Article  PubMed  Google Scholar 

  49. Asano-Miyoshi M, Abe K, Emori Y. Co-expression of calcium signaling components in vertebrate taste bud cells. Neurosci Lett 2000;283:61–4.

    Article  PubMed  Google Scholar 

  50. Huang L, Shanker YG, Dubauskaite J, Zheng JZ, Yan W, Rosenzweig S, Spielman AI, Max M, Margolskee RF. Gamma13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosci 1999;2:1055–62.

    Article  PubMed  Google Scholar 

  51. Shindo Y, Miura H, Carninci P, Kawai J, Hayashizaki Y, Ninomiya Y, Hino A, Kanda T, Kusakabe Y. Galpha14 is a candidate mediator of sweet/umami signal transduction in the posterior region of the mouse tongue. Biochem Biophys Res Commun 2008.

  52. Ueda T, Ugawa S, Yamamura H, Imaizumi Y, Shimada S. Functional interaction between T2R taste receptors and G-protein alpha subunits expressed in taste receptor cells. J Neurosci 2003; 23:7376–7380.

    PubMed  Google Scholar 

  53. Rossler P, Kroner C, Freitag J, Noe J, Breer H. Identification of a phospholipase C beta subtype in rat taste cells. Eur J Cell Biol 1998;77:253–61.

    PubMed  Google Scholar 

  54. Miyoshi MA, Abe K, Emori Y. IP(3) receptor type 3 and PLCbeta2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem Senses 2001;26:259–65.

    Article  PubMed  Google Scholar 

  55. Clapp TR, Stone LM, Margolskee RF, Kinnamon SC. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci 2001;2:6.

    Article  PubMed  Google Scholar 

  56. Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF. A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 2002;5:1169–76.

    Article  PubMed  Google Scholar 

  57. Hofmann T, Chubanov V, Gudermann T, Montell C. TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol 2003;13:1153–8.

    Article  PubMed  Google Scholar 

  58. Liu D, Liman ER. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 2003;100:15160–5.

    Article  PubMed  Google Scholar 

  59. Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci U S A 2003;100:15166–71.

    Article  PubMed  Google Scholar 

  60. Wong GT, Gannon KS, Margolskee RF. Transduction of bitter and sweet taste by gustducin. Nature (Lond) 1996;381:796–800.

    Article  Google Scholar 

  61. Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Perez CA, Shigemura N, Yoshida R, Mosinger BJr., Glendinning JI, Ninomiya Y, Margolskee RF. Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 2006;31:253–64.

    Article  PubMed  Google Scholar 

  62. Ugawa S, Minami Y, Guo W, Saishin Y, Takatsuji K, Yamamoto T, Tohyama M, Shimada S. Receptor that leaves a sour taste in the mouth. Nature 1998;395:555–6.

    Article  PubMed  Google Scholar 

  63. Ugawa S, Yamamoto T, Ueda T, Ishida Y, Inagaki A, Nishigaki M, Shimada S. Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J Neurosci 2003;23:3616–22.

    PubMed  Google Scholar 

  64. Stevens DR, Seifert R, Bufe B, Muller F, Kremmer E, Gauss R, Meyerhof W, Kaupp UB, Lindemann B. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 2001;413:631–5.

    Article  PubMed  Google Scholar 

  65. Lin W, Burks CA, Hansen DR, Kinnamon SC, Gilbertson TA. Taste receptor cells express pH-sensitive leak K+ channels. J Neurophysiol 2004;92:2909–19.

    Article  PubMed  Google Scholar 

  66. Richter TA, Dvoryanchikov GA, Chaudhari N, Roper SD. Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J Neurophysiol 2004;92:1928–36.

    Article  PubMed  Google Scholar 

  67. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJ, Zuker CS. The cells and logic for mammalian sour taste detection. Nature 2006;442:934–8.

    Article  PubMed  Google Scholar 

  68. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 2006;103:12569–74.

    Article  PubMed  Google Scholar 

  69. LopezJimenez ND, Cavenagh MM, Sainz E, Cruz-Ithier MA, Battey JF, Sullivan SL. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem 2006;98:68–77.

    Article  PubMed  Google Scholar 

  70. Yee CL, Yang R, Bottger B, Finger TE, Kinnamon JC. “Type III” cells of rat taste buds: immunohistochemical and ultrastructural studies of neuron-specific enolase, protein gene product 9.5, and serotonin. J Comp Neurol 2001;440:97–108.

    Article  PubMed  Google Scholar 

  71. Nelson GM, Finger TE. Immunolocalization of different forms of neural cell adhesion molecule (NCAM) in rat taste buds. J Comp Neurol 1993;336:507–16.

    Article  PubMed  Google Scholar 

  72. Kim DJ, Roper SD. Localization of serotonin in taste buds: a comparative study in four vertebrates. J Comp Neurol 1995;353:364–70.

    Article  PubMed  Google Scholar 

  73. Dvoryanchikov G, Tomchik SM, Chaudhari N. Biogenic amine synthesis and uptake in rodent taste buds. J Comp Neurol 2007;505:302–13.

    Article  PubMed  Google Scholar 

  74. Bartel DL, Sullivan SL, Lavoie EG, Sevigny J, Finger TE. Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J Comp Neurol 2006;497:1–12.

    Article  PubMed  Google Scholar 

  75. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 2000;408:990–4.

    Article  PubMed  Google Scholar 

  76. Inada H, Kawabata F, Ishimaru Y, Fushiki T, Matsunami H, Tominaga M. Off-response property of an acid-activated cation channel complex PKD1L3-PKD2L1. EMBO Rep 2008;9:690–7.

    Article  PubMed  Google Scholar 

  77. Lahiri S, Forster REII. CO2/H(+) sensing: peripheral and central chemoreception. Int J Biochem Cell Biol 2003;35:1413–35.

    Article  PubMed  Google Scholar 

  78. Richter TA, Caicedo A, Roper SD. Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J Physiol 2003;547:475–83.

    Article  PubMed  Google Scholar 

  79. Heck GL, Mierson S, DeSimone JA. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 1984;223:403–5.

    Article  PubMed  Google Scholar 

  80. Avenet P, Lindemann B. Amiloride-blockable sodium currents in isolated taste receptor cells. J Membr Biol 1988;105:245–55.

    Article  PubMed  Google Scholar 

  81. Kretz O, Barbry P, Bock R, Lindemann B. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J Histochem Cytochem 1999;47:51–64.

    PubMed  Google Scholar 

  82. Lyall V, Heck GL, Vinnikova AK, Ghosh S, Phan TH, Alam RI, Russell OF, Malik SA, Bigbee JW, DeSimone JA. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol 2004;558:147–59.

    Article  PubMed  Google Scholar 

  83. Treesukosol Y, Lyall V, Heck GL, DeSimone JA, Spector AC. A psychophysical and electrophysiological analysis of salt taste in Trpv1 null mice. Am J Physiol Regul Integr Comp Physiol 2007;292:R1799–809.

    PubMed  Google Scholar 

  84. Caicedo A, Kim KN, Roper SD. Individual mouse taste cells respond to multiple chemical stimuli. J Physiol 2002;544:501–9.

    Article  PubMed  Google Scholar 

  85. Gilbertson TA, Boughter JDJr, Zhang H, Smith DV. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J Neurosci 2001;21:4931–41.

    PubMed  Google Scholar 

  86. Sato T, Beidler LM. Broad tuning of rat taste cells for four basic taste stimuli. Chem Senses 1997;22:287–93.

    Article  PubMed  Google Scholar 

  87. Ohmoto M, Matsumoto I, Yasuoka A, Yoshihara Y, Abe K. Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells. Mol Cell Neurosci 2008;38:505–17.

    Article  PubMed  Google Scholar 

  88. Sugita M, Shiba Y. Genetic tracing shows segregation of taste neuronal circuitries for bitter and sweet. Science 2005;309:781–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiro Ishimaru.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11434-009-0438-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishimaru, Y. Molecular mechanisms of taste transduction in vertebrates. Odontology 97, 1–7 (2009). https://doi.org/10.1007/s10266-008-0095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-008-0095-y

Key words

Navigation