Skip to main content

Sporadic RCC: Abnormalities in Histone-Modifying Genes

  • Chapter
  • First Online:
Renal Cell Carcinoma

Abstract

Renal cell carcinoma (RCC) is one of the top ten leading causes of cancer death, affecting more than 50,000 patients annually. The median survival of patients with metastatic disease is approximately 2 years with systemic therapy, and the most common histology is clear cell renal cell carcinoma (ccRCC). The molecular mechanism is linked to the inactivation of the von Hippel-Lindau tumor suppressor gene (VHL), which encodes for an oxygen sensor that regulates degradation of the HIF (hypoxia-inducible factor) transcription factor (Latif et al., Science 260(5112):1317–1320, 1993). HIF transactivates target genes involved in cellular adaptation to hypoxia. The mammalian target of rapamycin (mTOR) signaling cascade is often stimulated in ccRCC, and activation of the mTOR kinase pathway further augments HIF levels to subsequently activate HIF-dependent transcription (Barthelemy et al., Crit Rev Oncol Hematol 88(1):42–56, 2013). The elucidation of VHL function and mTOR pathway activation led to the discovery of VEGF and mTOR inhibitors for RCC treatment. Recently, secondary mutations identified in histone-modifying enzymes suggest that chromatin remodeling and alterations of histone modifications may play a role in RCC pathogenesis and prognosis with distinct epigenetic phenotypes. This chapter will focus on summarizing the more prevalent genetic mutations and possible aberrant signaling pathways that contribute to metastatic ccRCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.

    CAS  PubMed  Google Scholar 

  2. Barthelemy P, Hoch B, Chevreau C, et al. mTOR inhibitors in advanced renal cell carcinomas: from biology to clinical practice. Crit Rev Oncol Hematol. 2013;88(1):42–56.

    PubMed  Google Scholar 

  3. Gallou C, Joly D, Mejean A, et al. Mutations of the VHL gene in sporadic renal cell carcinoma: definition of a risk factor for VHL patients to develop an RCC. Hum Mutat. 1999;13(6):464–75.

    CAS  PubMed  Google Scholar 

  4. Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7(1):85–90.

    CAS  PubMed  Google Scholar 

  5. Schraml P, Struckmann K, Hatz F, et al. VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J Pathol. 2002;196(2):186–93.

    CAS  PubMed  Google Scholar 

  6. Herman JG, Latif F, Weng Y, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994;91(21):9700–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Haase VH. The VHL, tumor suppressor: master regulator of HIF. Curr Pharm Des. 2009;15(33):3895–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Esteban MA, Harten SK, Tran MG, Maxwell PH. Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol. 2006;17(7):1801–6.

    CAS  PubMed  Google Scholar 

  9. Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol. 2003;5(1):64–70.

    CAS  PubMed  Google Scholar 

  10. Lutz MS, Burk RD. Primary cilium formation requires von Hippel-Lindau gene function in renal-derived cells. Cancer Res. 2006;66(14):6903–7.

    CAS  PubMed  Google Scholar 

  11. Thoma CR, Matov A, Gutbrodt KL, et al. Quantitative image analysis identifies pVHL as a key regulator of microtubule dynamic instability. J Cell Biol. 2010;190(6):991–1003.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Ohh M, Yauch RL, Lonergan KM, et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell. 1998;1(7):959–68.

    CAS  PubMed  Google Scholar 

  13. Kurban G, Duplan E, Ramlal N, et al. Collagen matrix assembly is driven by the interaction of von Hippel-Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2. Oncogene. 2008;27(7):1004–12.

    CAS  PubMed  Google Scholar 

  14. Esteban-Barragan MA, Avila P, Alvarez-Tejado M, et al. Role of the von Hippel-Lindau tumor suppressor gene in the formation of beta1-integrin fibrillar adhesions. Cancer Res. 2002;62(10):2929–36.

    CAS  PubMed  Google Scholar 

  15. Lee S, Nakamura E, Yang H, et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell. 2005;8(2):155–67.

    PubMed  Google Scholar 

  16. Yang H, Minamishima YA, Yan Q, et al. pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. Mol Cell. 2007;28(1):15–27.

    PubMed Central  PubMed  Google Scholar 

  17. Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell. 2006;22(3):395–405.

    CAS  PubMed  Google Scholar 

  18. Roe JS, Kim HR, Hwang IY, et al. Phosphorylation of von Hippel-Lindau protein by checkpoint kinase 2 regulates p53 transactivation. Cell Cycle. 2011;10(22):3920–8.

    CAS  PubMed  Google Scholar 

  19. Rechsteiner MP, von Teichman A, Nowicka A, Sulser T, Schraml P, Moch H. VHL gene mutations and their effects on hypoxia inducible factor HIFalpha: identification of potential driver and passenger mutations. Cancer Res. 2011;71(16):5500–11.

    CAS  PubMed  Google Scholar 

  20. Sato Y, Yoshizato T, Shiraishi Y, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013;45(8):860–7.

    CAS  PubMed  Google Scholar 

  21. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.

    Google Scholar 

  22. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.

    CAS  PubMed  Google Scholar 

  23. Hake SB, Xiao A, Allis CD. Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer. 2004;90(4):761–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med. 2007;13(9):363–72.

    CAS  PubMed  Google Scholar 

  25. Ellinger J, Kahl P, Mertens C, et al. Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int J Cancer. 2010;127(10):2360–6.

    CAS  PubMed  Google Scholar 

  26. Seligson DB, Horvath S, Shi T, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435(7046):1262–6.

    CAS  PubMed  Google Scholar 

  27. Mosashvilli D, Kahl P, Mertens C, et al. Global histone acetylation levels: prognostic relevance in patients with renal cell carcinoma. Cancer Sci. 2010;101(12):2664–9.

    CAS  PubMed  Google Scholar 

  28. Rogenhofer S, Kahl P, Mertens C, et al. Global histone H3 lysine 27 (H3K27) methylation levels and their prognostic relevance in renal cell carcinoma. BJU Int. 2012;109(3):459–65.

    CAS  PubMed  Google Scholar 

  29. Seligson DB, Horvath S, McBrian MA, et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol. 2009;174(5):1619–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Kanao K, Mikami S, Mizuno R, Shinojima T, Murai M, Oya M. Decreased acetylation of histone H3 in renal cell carcinoma: a potential target of histone deacetylase inhibitors. J Urol. 2008;180(3):1131–6.

    CAS  PubMed  Google Scholar 

  31. Minardi D, Lucarini G, Filosa A, et al. Prognostic role of global DNA-methylation and histone acetylation in pT1a clear cell renal carcinoma in partial nephrectomy specimens. J Cell Mol Med. 2009;13(8B):2115–21.

    PubMed  Google Scholar 

  32. Morris MR, Maher ER. Epigenetics of renal cell carcinoma: the path towards new diagnostics and therapeutics. Genome Med. 2010;2(9):59.

    PubMed Central  PubMed  Google Scholar 

  33. Cairns P. Gene methylation and early detection of genitourinary cancer: the road ahead. Nat Rev Cancer. 2007;7(7):531–43.

    CAS  PubMed  Google Scholar 

  34. Ibragimova I, Maradeo ME, Dulaimi E, Cairns P. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Epigenetics. 2013;8(5):486–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Varela I, Tarpey P, Raine K, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 2012;44(7):751–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Hakimi AA, Chen YB, Wren J, et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol. 2013;63(5):848–54.

    PubMed Central  PubMed  Google Scholar 

  38. Xia W, Nagase S, Montia AG, et al. BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer. Cancer Res. 2008;68(6):1667–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Duns G, Hofstra RM, Sietzema JG, et al. Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development. Hum Mutat. 2012;33(7):1059–62.

    CAS  PubMed  Google Scholar 

  40. Pawlowski R, Muhl SM, Sulser T, Krek W, Moch H, Schraml P. Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int J Cancer. 2013;132(2):E11–7.

    CAS  PubMed  Google Scholar 

  41. Hakimi AA, Ostrovnaya I, Reva B, et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res. 2013;19(12):3259–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Kapur P, Pena-Llopis S, Christie A, et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 2013;14(2):159–67.

    CAS  PubMed  Google Scholar 

  43. Thompson M. Polybromo-1: the chromatin targeting subunit of the PBAF complex. Biochimie. 2009;91(3):309–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene. 2009;28(14):1653–68.

    CAS  PubMed  Google Scholar 

  45. Brownlee PM, Chambers AL, Oliver AW, Downs JA. Cancer and the bromodomains of BAF180. Biochem Soc Trans. 2012;40(2):364–9.

    CAS  PubMed  Google Scholar 

  46. Huang X, Gao X, Diaz-Trelles R, Ruiz-Lozano P, Wang Z. Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol. 2008;319(2):258–66.

    CAS  PubMed  Google Scholar 

  47. Burrows AE, Smogorzewska A, Elledge SJ. Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci U S A. 2010;107(32):14280–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Xue Y, Canman JC, Lee CS, et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci U S A. 2000;97(24):13015–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Wurster AL, Precht P, Becker KG, et al. IL-10 transcription is negatively regulated by BAF180, a component of the SWI/SNF chromatin remodeling enzyme. BMC Immunol. 2012;13:9.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Murali R, Wiesner T, Scolyer RA. Tumours associated with BAP1 mutations. Pathology. 2013;45(2):116–26.

    CAS  PubMed  Google Scholar 

  51. Abdel-Rahman MH, Pilarski R, Cebulla CM, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011;48(12):856–9.

    CAS  PubMed  Google Scholar 

  52. Harbour JW, Onken MD, Roberson ED, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Wiesner T, Obenauf AC, Murali R, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43(10):1018–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Bott M, Brevet M, Taylor BS, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43(7):668–72.

    CAS  PubMed  Google Scholar 

  55. Testa JR, Cheung M, Pei J, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Jensen DE, Proctor M, Marquis ST, et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene. 1998;16(9):1097–112.

    CAS  PubMed  Google Scholar 

  57. Jensen DE, Rauscher III FJ. Defining biochemical functions for the BRCA1 tumor suppressor protein: analysis of the BRCA1 binding protein BAP1. Cancer Lett. 1999;143 Suppl 1:S13–7.

    CAS  PubMed  Google Scholar 

  58. Dey A, Seshasayee D, Noubade R, et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science. 2012;337(6101):1541–6.

    CAS  PubMed  Google Scholar 

  59. Abdel-Wahab O, Dey A. The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics. Leukemia. 2013;27(1):10–5.

    CAS  PubMed  Google Scholar 

  60. Ventii KH, Devi NS, Friedrich KL, et al. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res. 2008;68(17):6953–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Eletr ZM, Wilkinson KD. An emerging model for BAP1’s role in regulating cell cycle progression. Cell Biochem Biophys. 2011;60(1–2):3–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Mallery DL, Vandenberg CJ, Hiom K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J. 2002;21(24):6755–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Nishikawa H, Wu W, Koike A, et al. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res. 2009;69(1):111–9.

    CAS  PubMed  Google Scholar 

  64. Machida YJ, Machida Y, Vashisht AA, Wohlschlegel JA, Dutta A. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem. 2009;284(49):34179–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Misaghi S, Ottosen S, Izrael-Tomasevic A, et al. Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol Cell Biol. 2009;29(8):2181–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell. 2009;138(2):389–403.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Scheuermann JC, de Ayala Alonso AG, Oktaba K, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature. 2010;465(7295):243–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.

    CAS  PubMed  Google Scholar 

  69. Stokes MP, Rush J, Macneill J, et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci U S A. 2007;104(50):19855–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kapur P, Christie A, Raman JD, et al. BAP1 immunohistochemistry in a multi-institutional cohort predicts outcomes in patients with clear cell renal cell carcinoma. J Urol. 2014;191(3):603–10.

    CAS  PubMed  Google Scholar 

  71. Brannon AR, Reddy A, Seiler M, et al. Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer. 2010;1(2):152–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Sun XJ, Wei J, Wu XY, et al. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem. 2005;280(42):35261–71.

    CAS  PubMed  Google Scholar 

  73. Edmunds JW, Mahadevan LC, Clayton AL. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 2008;27(2):406–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Strahl BD, Grant PA, Briggs SD, et al. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol. 2002;22(5):1298–306.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol. 2005;25(8):3305–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Hesselberth JR, Miller JP, Golob A, Stajich JE, Michaud GA, Fields S. Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol. 2006;7(4):R30.

    PubMed Central  PubMed  Google Scholar 

  77. Pena-Llopis S, Christie A, Xie XJ, Brugarolas J. Cooperation and antagonism among cancer genes: the renal cancer paradigm. Cancer Res. 2013;73(14):4173–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Hu M, Sun XJ, Zhang YL, et al. Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling. Proc Natl Acad Sci U S A. 2010;107(7):2956–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Al Sarakbi W, Sasi W, Jiang WG, Roberts T, Newbold RF, Mokbel K. The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters. BMC Cancer. 2009;9:290.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Newbold RF, Mokbel K. Evidence for a tumour suppressor function of SETD2 in human breast cancer: a new hypothesis. Anticancer Res. 2010;30(9):3309–11.

    CAS  PubMed  Google Scholar 

  81. Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol. 2013;125(5):659–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Li M, Phatnani HP, Guan Z, Sage H, Greenleaf AL, Zhou P. Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc Natl Acad Sci U S A. 2005;102(49):17636–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Xie P, Tian C, An L, et al. Histone methyltransferase protein SETD2 interacts with p53 and selectively regulates its downstream genes. Cell Signal. 2008;20(9):1671–8.

    CAS  PubMed  Google Scholar 

  84. de Almeida SF, Grosso AR, Koch F, et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol. 2011;18(9):977–83.

    PubMed  Google Scholar 

  85. Carvalho S, Raposo AC, Martins FB, et al. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res. 2013;41(5):2881–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Li F, Mao G, Tong D, et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell. 2013;153(3):590–600.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Niu X, Zhang T, Liao L, et al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene. 2012;31(6):776–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Dalgliesh GL, Furge K, Greenman C, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463(7279):360–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem. 2008;283(52):36542–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ. Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol. 2010;30(1):344–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Guo X, Shi M, Sun L, et al. The expression of histone demethylase JMJD1A in renal cell carcinoma. Neoplasma. 2011;58(2):153–7.

    CAS  PubMed  Google Scholar 

  92. Iwase S, Lan F, Bayliss P, et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell. 2007;128(6):1077–88.

    CAS  PubMed  Google Scholar 

  93. Tahiliani M, Mei P, Fang R, et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature. 2007;447(7144):601–5.

    CAS  PubMed  Google Scholar 

  94. Jensen LR, Amende M, Gurok U, et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet. 2005;76(2):227–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Tzschach A, Lenzner S, Moser B, et al. Novel JARID1C/SMCX mutations in patients with X-linked mental retardation. Hum Mutat. 2006;27(4):389.

    PubMed  Google Scholar 

  96. Santos C, Rodriguez-Revenga L, Madrigal I, Badenas C, Pineda M, Mila M. A novel mutation in JARID1C gene associated with mental retardation. Eur J Hum Genet. 2006;14(5):583–6.

    CAS  PubMed  Google Scholar 

  97. Kleer CG, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A. 2003;100(20):11606–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Ozdag H, Teschendorff AE, Ahmed AA, et al. Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics. 2006;7:90.

    PubMed Central  PubMed  Google Scholar 

  99. Sakurai T, Bilim VN, Ugolkov AV, et al. The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells. Biochem Biophys Res Commun. 2012;422(4):607–14.

    CAS  PubMed  Google Scholar 

  100. Shen Y, Guo X, Wang Y, et al. Expression and significance of histone H3K27 demethylases in renal cell carcinoma. BMC Cancer. 2012;12:470.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Seidel C, Florean C, Schnekenburger M, Dicato M, Diederich M. Chromatin-modifying agents in anti-cancer therapy. Biochimie. 2012;94(11):2264–79.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thai H. Ho M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dere, R., Ho, T.H. (2015). Sporadic RCC: Abnormalities in Histone-Modifying Genes. In: Bukowski, R., Figlin, R., Motzer, R. (eds) Renal Cell Carcinoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1622-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1622-1_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1621-4

  • Online ISBN: 978-1-4939-1622-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics