Skip to main content

Carbonic Anhydrase IX and Monoclonal Antibody G250: Relevance as a Clinical and Biologic Target in Renal Cell Carcinoma

  • Chapter
  • First Online:
Renal Cell Carcinoma

Abstract

Carbonic anhydrase IX (CAIX) has long been recognized as a relevant target for clear cell renal cell carcinoma (ccRCC). It has shown value as biomarker and monoclonal antibody G250 (mAbG250), recognizing a conformational determinant on CAIX, and has shown remarkable targeting ability in RCC patients. The addition of CAIX expression to nomograms can further stratify ccRCC patients, but unfortunately lack of commercially available agents has thus far prevented implementation. Indirect evidence suggests that therapy with unmodified mAbG250 can be beneficial in a subgroup of patients, but randomized trials are needed to substantiate this claim. The main value of the antibody at present appears to be as diagnostic and also as a delivery vehicle for radioimmunotherapy. Whether mAbG250 can be combined with tyrosine-kinase inhibitors or mTOR inhibitors remains to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schwartz GJ. Physiology and molecular biology of renal carbonic anhydrase. J Nephrol. 2002;15 Suppl 5:S61–74.

    CAS  PubMed  Google Scholar 

  2. Supuran CT. Carbonic anhydrases: catalytic and inhibition mechanisms, distribution and physiological roles. In: Supuran CT, Scozzafava A, et al., editors. Carbonic anhydrase its inhibitors and activators. Boca Raton, FL: CRC Press; 2004. p. 1–23.

    Chapter  Google Scholar 

  3. Pastorek J, Pastorekova S, Callebaut I, Mornon JP, Zelnik V, Opavsky R, et al. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene. 1994;9:2877–88.

    CAS  PubMed  Google Scholar 

  4. Grabmaier K, Vissers JL, De Weijert MC, Oosterwijk-Wakka JC, Van BA, Brakenhoff RH, et al. Molecular cloning and immunogenicity of renal cell carcinoma-associated antigen G250. Int J Cancer. 2000;85:865–70.

    Article  CAS  PubMed  Google Scholar 

  5. Zatovicova M, Sedlakova O, Svastova E, Ohradanova A, Ciampor F, Arribas J, et al. Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17. Br J Cancer. 2005;93:1267–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Grabmaier K, A de Weijert MC, Verhaegh GW, Schalken JA, Oosterwijk E. Strict regulation of CAIX(G250/MN) by HIF-1alpha in clear cell renal cell carcinoma. Oncogene. 2004;23:5624–31.

    Article  CAS  PubMed  Google Scholar 

  7. Kaluz S, Kaluzova M, Liao SY, Lerman M, Stanbridge EJ. Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochim Biophys Acta. 2009;1795:162–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260:1317–20.

    Article  CAS  PubMed  Google Scholar 

  9. Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7:85–90.

    Article  CAS  PubMed  Google Scholar 

  10. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  PubMed  Google Scholar 

  11. Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun. 2005;338:617–26.

    Article  CAS  PubMed  Google Scholar 

  12. Potter C, Harris AL. Hypoxia inducible carbonic anhydrase IX, marker of tumor hypoxia, survival pathway and therapy target. Cell Cycle. 2004;3:164–7.

    Article  CAS  PubMed  Google Scholar 

  13. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994;91:9700–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469:539–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41:521–3.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463:360–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Guo GW, Gui YT, Gao SJ, Tang AF, Hu XD, Huang Y, et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet. 2012;44:17–9.

    Article  CAS  Google Scholar 

  18. Bui MH, Seligson D, Han KR, Pantuck AJ, Dorey FJ, Huang Y, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res. 2003;9:802–11.

    CAS  PubMed  Google Scholar 

  19. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    Article  CAS  PubMed  Google Scholar 

  20. Schwaber J, Cohen EP. Human × mouse somatic cell hybrid clone secreting immunoglobulins of both parental types. Nature. 1973;244:444–7.

    Article  CAS  PubMed  Google Scholar 

  21. Finstad CL, Cordon-Cardo C, Bander NH, Whitmore WF, Melamed MR, Old LJ. Specificity analysis of mouse monoclonal antibodies defining cell surface antigens of human renal cancer. Proc Natl Acad Sci U S A. 1985;82:2955–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ueda R, Ogata S, Morrissey DM, Finstad CL, Szkudlarek J, Whitmore WF, et al. Cell surface antigens of human renal cancer defined by mouse monoclonal antibodies: identification of tissue-specific kidney glycoproteins. Proc Natl Acad Sci U S A. 1981;78:5122–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Oosterwijk E, Ruiter DJ, Wakka JC, Huiskens-van der Meij JW, Jonas U, Fleuren GJ, et al. Immunohistochemical analysis of monoclonal antibodies to renal antigens. Application in the diagnosis of renal cell carcinoma. Am J Pathol. 1986;123:301–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Lange PH, Vessella RL, Chiou RK, Elson MK, Moon TD, Palme D, et al. Monoclonal antibodies in human renal cell carcinoma and their use in radioimmune localization and therapy of tumor xenografts. Surgery. 1985;98:143–50.

    CAS  PubMed  Google Scholar 

  25. Vessella RL, Moon TD, Chiou RK, Nowak JA, Arfman EW, Palme DF, et al. Monoclonal antibodies to human renal cell carcinoma: recognition of shared and restricted tissue antigens. Cancer Res. 1985;45:6131–9.

    CAS  PubMed  Google Scholar 

  26. Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, Pauwels EK, Jonas U, Zwartendijk J, et al. Monoclonal antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer. 1986;38:489–94.

    Article  CAS  PubMed  Google Scholar 

  27. Leibovich BC, Sheinin Y, Lohse CM, Thompson RH, Cheville JC, Zavada J, et al. Carbonic anhydrase IX is not an independent predictor of outcome for patients with clear cell renal cell carcinoma. J Clin Oncol. 2007;25:4757–64.

    Article  PubMed  Google Scholar 

  28. Sandlund J, Oosterwijk E, Grankvist K, Oosterwijk-Wakka J, Ljungberg B, Rasmuson T. Prognostic impact of carbonic anhydrase IX expression in human renal cell carcinoma. BJU Int. 2007;100:556–60.

    Article  PubMed  Google Scholar 

  29. Kim HS, Kim WS, Park SH, Jung CW, Choi HY, Lee HM, et al. Molecular biomarkers for advanced renal cell carcinoma: implications for prognosis and therapy. Urol Oncol. 2010;28:157–63.

    Article  CAS  PubMed  Google Scholar 

  30. Patard JJ, Fergelot P, Karakiewicz PI, Klatte T, Trinh QD, Rioux-Leclercq N, et al. Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. Int J Cancer. 2008;123:395–400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhang BY, Thompson RH, Lohse CM, Dronca RS, Cheville JC, Kwon ED, et al. Carbonic anhydrase IX (CAIX) is not an independent predictor of outcome in patients with clear cell renal cell carcinoma (ccRCC) after long-term follow-up. BJU Int. 2013;111:1046–53.

    Article  CAS  PubMed  Google Scholar 

  32. de Martino M, Klatte T, Seligson DB, LaRochelle J, Shuch B, Caliliw R, et al. CA9 gene: single nucleotide polymorphism predicts metastatic renal cell carcinoma prognosis. J Urol. 2009;182:728–34.

    Article  PubMed  Google Scholar 

  33. Kim HL, Seligson D, Liu X, Janzen N, Bui MH, Yu H, et al. Using tumor markers to predict the survival of patients with metastatic renal cell carcinoma. J Urol. 2005;173:1496–501.

    Article  CAS  PubMed  Google Scholar 

  34. Kim HL, Seligson D, Liu X, Janzen N, Bui MH, Yu H, et al. Using protein expressions to predict survival in clear cell renal carcinoma. Clin Cancer Res. 2004;10:5464–71.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Ahmadie HA, Alden D, Qin LX, Olgac S, Fine SW, Gopalan A, et al. Carbonic anhydrase IX expression in clear cell renal cell carcinoma: an immunohistochemical study comparing 2 antibodies. Am J Surg Pathol. 2008;32:377–82.

    Article  PubMed  Google Scholar 

  36. Li Y, Wang H, Oosterwijk E, Selman Y, Mira JC, Medrano T, et al. Antibody-specific detection of CAIX in breast and prostate cancers. Biochem Biophys Res Commun. 2009;386:488–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Atkins M, Regan M, McDermott D, Mier J, Stanbridge E, Youmans A, et al. Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin Cancer Res. 2005;11:3714–21.

    Article  CAS  PubMed  Google Scholar 

  38. McDermott DF, Ghebremichael M, Signoretti S, Margolin KA, Clark J, Sosman JA, Dutcher JP, Logan T, Figlin RA, Atkins MB, Cytokine Working Group. The high-dose aldesleukin (HD IL-2) “SELECT” trial in patients with metastatic renal cell carcinoma (mRCC). J Clin Oncol. ASCO Annual Meeting Proceedings 2010;abstract 4514.

    Google Scholar 

  39. Choueiri TK, Regan MM, Rosenberg JE, Oh WK, Clement J, Amato AM, et al. Carbonic anhydrase IX and pathological features as predictors of outcome in patients with metastatic clear-cell renal cell carcinoma receiving vascular endothelial growth factor-targeted therapy. BJU Int. 2010;106:772–8.

    Article  CAS  PubMed  Google Scholar 

  40. Choueiri TK, Cheng S, Qu AQ, Pastorek J, Atkins MB, Signoretti S. Carbonic anhydrase IX as a potential biomarker of efficacy in metastatic clear-cell renal cell carcinoma patients receiving sorafenib or placebo: analysis from the treatment approaches in renal cancer global evaluation trial (TARGET). Urol Oncol. 2012;31(8):1788–93.

    Article  PubMed  Google Scholar 

  41. Atkins MB, Hidalgo M, Stadler WM, Logan TF, Dutcher JP, Hudes GR, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol. 2004;22:909–18.

    Article  CAS  PubMed  Google Scholar 

  42. Cho D, Signoretti S, Dabora S, Regan M, Seeley A, Mariotti M, et al. Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2007;5:379–85.

    Article  CAS  PubMed  Google Scholar 

  43. McKiernan JM, Buttyan R, Bander NH, Stifelman MD, Katz AE, Chen MW, et al. Expression of the tumor-associated gene MN: a potential biomarker for human renal cell carcinoma. Cancer Res. 1997;57:2362–5.

    CAS  PubMed  Google Scholar 

  44. Uemura H, Nakagawa Y, Yoshida K, Saga S, Yoshikawa K, Hirao Y, et al. MN/CA IX/G250 as a potential target for immunotherapy of renal cell carcinomas. Br J Cancer. 1999;81:741–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Takacova M, Bartosova M, Skvarkova L, Zatovicova M, Vidlickova I, Csaderova L, et al. Carbonic anhydrase IX is a clinically significant tissue and serum biomarker associated with renal cell carcinoma. Oncol Lett. 2013;5:191–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Zhou GX, Ireland J, Rayman P, Finke J, Zhou M. Quantification of carbonic anhydrase IX expression in serum and tissue of renal cell carcinoma patients using enzyme-linked immunosorbent assay: prognostic and diagnostic potentials. Urology. 2010;75:257–61.

    Article  PubMed  Google Scholar 

  47. Li G, Feng G, Gentil-Perret A, Genin C, Tostain J. Serum carbonic anhydrase 9 level is associated with postoperative recurrence of conventional renal cell cancer. J Urol. 2008;180:510–3.

    Article  CAS  PubMed  Google Scholar 

  48. Papworth K, Sandlund J, Grankvist K, Ljungberg B, Rasmuson T. Soluble carbonic anhydrase IX is not an independent prognostic factor in human renal cell carcinoma. Anticancer Res. 2010;30:2953–7.

    CAS  PubMed  Google Scholar 

  49. Liao SY, Aurelio ON, Jan K, Zavada J, Stanbridge EJ. Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney. Cancer Res. 1997;57:2827–31.

    CAS  PubMed  Google Scholar 

  50. Volpe A, Mattar K, Finelli A, Kachura JR, Evans AJ, Geddie WR, et al. Contemporary results of percutaneous biopsy of 100 small renal masses: a single center experience. J Urol. 2008;180:2333–7.

    Article  PubMed  Google Scholar 

  51. Schmidbauer J, Remzi M, Memarsadeghi M, Haitel A, Klingler HC, Katzenbeisser D, et al. Diagnostic accuracy of computed tomography-guided percutaneous biopsy of renal masses. Eur Urol. 2008;53:1003–11.

    Article  PubMed  Google Scholar 

  52. Bachor R, Kotzerke J, Gottfried HW, Brandle E, Reske SN, Hautmann R. [Positron emission tomography in diagnosis of renal cell carcinoma]. Urologe A. 1996;35:146–50.

    CAS  PubMed  Google Scholar 

  53. Oosterwijk E, Bander NH, Divgi CR, Welt S, Wakka JC, Finn RD, et al. Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. J Clin Oncol. 1993;11:738–50.

    CAS  PubMed  Google Scholar 

  54. Zavada J, Zavadova Z, Zat’ovicova M, Hyrsl L, Kawaciuk I. Soluble form of carbonic anhydrase IX (CA IX) in the serum and urine of renal carcinoma patients. Br J Cancer. 2003;89:1067–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Divgi CR, Bander NH, Graham MC, Scott AM, Welt S, Motzer RJ, et al. Radioimmunotherapy (RIT) with I-131 monoclonal-antibody (Mab) G250 in metastatic renal-cancer. J Nucl Med. 1994;35:P101.

    Google Scholar 

  56. Steffens MG, Boerman OC, Oosterwijk-Wakka JC, Oosterhof GO, Witjes JA, Koenders EB, et al. Targeting of renal cell carcinoma with iodine-131-labeled chimeric monoclonal antibody G250. J Clin Oncol. 1997;15:1529–37.

    CAS  PubMed  Google Scholar 

  57. Brouwers AH, Dorr U, Lang O, Boerman OC, Oyen WJ, Steffens MG, et al. 131 I-cG250 monoclonal antibody immunoscintigraphy versus [18F]FDG-PET imaging in patients with metastatic renal cell carcinoma: a comparative study. Nucl Med Commun. 2002;23:229–36.

    Article  CAS  PubMed  Google Scholar 

  58. Brouwers AH, Buijs WC, Oosterwijk E, Boerman OC, Mala C, De Mulder PH, et al. Targeting of metastatic renal cell carcinoma with the chimeric monoclonal antibody G250 labeled with (131)I or (111)In: an intrapatient comparison. Clin Cancer Res. 2003;9:3953S–60.

    CAS  PubMed  Google Scholar 

  59. Divgi CR, Pandit-Taskar N, Jungbluth AA, Reuter VE, Gonen M, Ruan S, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8:304–10.

    Article  CAS  PubMed  Google Scholar 

  60. Pryma DA, O’Donoghue JA, Humm JL, Jungbluth AA, Old LJ, Larson SM, et al. Correlation of in vivo and in vitro measures of carbonic anhydrase IX antigen expression in renal masses using antibody 124I-cG250. J Nucl Med. 2011;52:535–40.

    Article  CAS  PubMed  Google Scholar 

  61. Divgi CR, Uzzo RG, Gatsonis C, Bartz R, Treutner S, Yu JQ, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT Trial. J Clin Oncol. 2013;31(2):187–94.

    Article  PubMed  Google Scholar 

  62. Povoski SP, Hall NC, Murrey Jr DA, Sharp DS, Hitchcock CL, Mojzisik CM, et al. Multimodal imaging and detection strategy with 124 I-labeled chimeric monoclonal antibody cG250 for accurate localization and confirmation of extent of disease during laparoscopic and open surgical resection of clear cell renal cell carcinoma. Surg Innov. 2013;20(1):59–69.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Brouwers A, Verel I, Van Eerd J, Visser G, Steffens M, Oosterwijk E, et al. PET radioimmunoscintigraphy of renal cell cancer using 89Zr-labeled cG250 monoclonal antibody in nude rats. Cancer Biother Radiopharm. 2004;19:155–63.

    Article  CAS  PubMed  Google Scholar 

  64. Muselaers CHJ, Stillebroer AB, Boers-Sonderen MJ, Desar IME, van Herpen CML, Langenhuijsen JF, et al. Sorafenib reduces the tumor uptake of Indium-111-girentuximab in clear cell renal cell carcinoma patients. Presented at 25th Annual European Association of Nuclear Medicine Congress, Milan, Italy, 27–31 Oct 2012.

    Google Scholar 

  65. Oosterwijk-Wakka JC, Kats-Ugurlu G, Leenders WP, Kiemeney LA, Old LJ, Mulders PF, et al. Effect of tyrosine kinase inhibitor treatment of renal cell carcinoma on the accumulation of carbonic anhydrase IX-specific chimeric monoclonal antibody cG250. BJU Int. 2011;107:118–25.

    Article  CAS  PubMed  Google Scholar 

  66. Escudier B, Szczylik C, Porta C, Gore M. Treatment selection in metastatic renal cell carcinoma: expert consensus. Nat Rev Clin Oncol. 2012;9:327–37.

    Article  CAS  PubMed  Google Scholar 

  67. de Waal RM, Leenders WP. Sprouting angiogenesis versus co-option in tumor angiogenesis. In: Mechanisms of Angiogenesis, Experientia supplementum. Basel: Birkhäuser Basel; 2005. p. 65–76.

    Chapter  Google Scholar 

  68. Rhoden JJ, Wittrup KD. Dose dependence of intratumoral perivascular distribution of monoclonal antibodies. J Pharm Sci. 2012;101:860–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Surfus JE, Hank JA, Oosterwijk E, Welt S, Lindstrom MJ, Albertini MR, et al. Anti-renal-cell carcinoma chimeric antibody G250 facilitates antibody-dependent cellular cytotoxicity with in vitro and in vivo interleukin-2-activated effectors. J Immunother Emphasis Tumor Immunol. 1996;19:184–91.

    Article  CAS  PubMed  Google Scholar 

  70. Liu Z, Smyth FE, Renner C, Lee FT, Oosterwijk E, Scott AM. Anti-renal cell carcinoma chimeric antibody G250: cytokine enhancement of in vitro antibody-dependent cellular cytotoxicity. Cancer Immunol Immunother. 2002;51:171–7.

    Article  CAS  PubMed  Google Scholar 

  71. van Dijk J, Uemura H, Beniers AJ, Peelen WP, Zegveld ST, Fleuren GJ, et al. Therapeutic effects of monoclonal antibody G250, interferons and tumor necrosis factor, in mice with renal-cell carcinoma xenografts. Int J Cancer. 1994;56:262–8.

    Article  PubMed  Google Scholar 

  72. Davis ID, Wiseman GA, Lee FT, Gansen DN, Hopkins W, Papenfuss AT, et al. A phase I multiple dose, dose escalation study of cG250 monoclonal antibody in patients with advanced renal cell carcinoma. Cancer Immun. 2007;7:13.

    PubMed Central  PubMed  Google Scholar 

  73. Bleumer I, Knuth A, Oosterwijk E, Hofmann R, Varga Z, Lamers C, et al. A phase II trial of chimeric monoclonal antibody G250 for advanced renal cell carcinoma patients. Br J Cancer. 2004;90:985–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Davis ID, Liu Z, Saunders W, Lee FT, Spirkoska V, Hopkins W, Smyth FE, Chong G, Papenfuss AT, Chappell B, Poon A, Saunder TH, Hoffman EW, Old LJ, Scott AM. A pilot study of monoclonal antibody cg250 and low dose subcutaneous il-2 in patients with advanced renal cell carcinoma. Cancer Immun. 2007;7:14.

    PubMed Central  PubMed  Google Scholar 

  75. Bleumer I, Oosterwijk E, Oosterwijk-Wakka JC, Voller MC, Melchior S, Warnaar SO, et al. A clinical trial with chimeric monoclonal antibody WX-G250 and low dose interleukin-2 pulsing scheme for advanced renal cell carcinoma. J Urol. 2006;175:57–62.

    Article  CAS  PubMed  Google Scholar 

  76. Brouwers AH, Frielink C, Oosterwijk E, Oyen WJ, Corstens FH, Boerman OC. Interferons can upregulate the expression of the tumor associated antigen G250-MN/CA IX, a potential target for (radio)immunotherapy of renal cell carcinoma. Cancer Biother Radiopharm. 2003;18:539–47.

    Article  CAS  PubMed  Google Scholar 

  77. Siebels M, Rohrmann K, Oberneder R, Stahler M, Haseke N, Beck J, et al. A clinical phase I/II trial with the monoclonal antibody cG250 (RENCAREX(R)) and interferon-alpha-2a in metastatic renal cell carcinoma patients. World J Urol. 2011;29:121–6.

    Article  CAS  PubMed  Google Scholar 

  78. Belldegrun AS, Chamie K, Kloepfer P, Fall B, Bevan P, Störkel S, Wilhelm O, Pantuck AJ. ARISER: a randomized double blind phase III study to evaluate adjuvant cG250 treatment versus placebo in patients with high-risk ccRCC—results and implications for adjuvant clinical trials. ASCO Annual Meeting 2013;abstract 4507.

    Google Scholar 

  79. Divgi CR, Bander NH, Scott AM, O’Donoghue JA, Sgouros G, Welt S, et al. Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin Cancer Res. 1998;4:2729–39.

    CAS  PubMed  Google Scholar 

  80. Steffens MG, Boerman OC, Oyen WJG, De Mulder PHM, Witjes JA, Oosterhof GON, et al. Radioimmunotherapy with I-131-cG250 monoclonal antibody in patients with metastasized RCC, a phase I/II study. J Urol. 1998;159:148.

    Google Scholar 

  81. Divgi CR, O’Donoghue JA, Welt S, O’Neel J, Finn R, Motzer RJ, et al. Phase I clinical trial with fractionated radioimmunotherapy using 131I-labeled chimeric G250 in metastatic renal cancer. J Nucl Med. 2004;45:1412–21.

    CAS  PubMed  Google Scholar 

  82. Brouwers AH, Mulders PF, de Mulder PH, van den Broek WJ, Buijs WC, Mala C, et al. Lack of efficacy of two consecutive treatments of radioimmunotherapy with 131I-cG250 in patients with metastasized clear cell renal cell carcinoma. J Clin Oncol. 2005;23:6540–8.

    Article  CAS  PubMed  Google Scholar 

  83. Brouwers AH, Buijs WC, Mulders PF, de Mulder PH, van den Broek WJ, Mala C, et al. Radioimmunotherapy with [131I]cG250 in patients with metastasized renal cell cancer: dosimetric analysis and immunologic response. Clin Cancer Res. 2005;11:7178s–86.

    Article  CAS  PubMed  Google Scholar 

  84. Brouwers AH, van Eerd JE, Frielink C, Oosterwijk E, Oyen WJ, Corstens FH, et al. Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y, 177Lu, or 186Re. J Nucl Med. 2004;45:327–37.

    CAS  PubMed  Google Scholar 

  85. Sharkey RM, Behr TM, Mattes MJ, Stein R, Griffiths GL, Shih LB, et al. Advantage of residualizing radiolabels for an internalizing antibody against the B-cell lymphoma antigen, CD22. Cancer Immunol Immunother. 1997;44:179–88.

    Article  CAS  PubMed  Google Scholar 

  86. Stillebroer AB, Boerman OC, Desar IM, Boers-Sonderen MJ, van Herpen CM, Langenhuijsen JF, et al. Phase 1 radioimmunotherapy study with lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol. 2013;64(3):478–85.

    Article  CAS  PubMed  Google Scholar 

  87. Stillebroer AB, Zegers CM, Boerman OC, Oosterwijk E, Mulders PF, O’Donoghue JA, et al. Dosimetric analysis of 177Lu-cG250 radioimmunotherapy in renal cell carcinoma patients: correlation with myelotoxicity and pretherapeutic absorbed dose predictions based on 111In-cG250 imaging. J Nucl Med. 2012;53:82–9.

    Article  CAS  PubMed  Google Scholar 

  88. Stillebroer AB, Oosterwijk E, Franssen GM, Oyen WJG, Boerman OC, Mulders PFA. Optical imaging of renal cell carcinoma using the anti-CAIX monoclonal antibody Cg250. Eur Urol Suppl. 2011;10:105.

    Article  Google Scholar 

  89. Muselaers CH, Boerman OC, Oosterwijk E, Langenhuijsen JF, Oyen WJ, Mulders PF. Indium-111-labeled girentuximab immunospect as a diagnostic tool in clear cell renal cell carcinoma. Eur Urol. 2013;63(6):1101–6.

    Article  CAS  PubMed  Google Scholar 

  90. Bauer S, Oosterwijk-Wakka JC, Adrian N, Oosterwijk E, Fischer E, Wuest T, et al. Targeted therapy of renal cell carcinoma: synergistic activity of cG250-TNF and IFNg. Int J Cancer. 2009;125:115–23.

    Article  CAS  PubMed  Google Scholar 

  91. Steffens MG, Boerman OC, Oyen WJ, Kniest PH, Witjes JA, Oosterhof GO, et al. Intratumoral distribution of two consecutive injections of chimeric antibody G250 in primary renal cell carcinoma: implications for fractionated dose radioimmunotherapy. Cancer Res. 1999;59:1615–9.

    CAS  PubMed  Google Scholar 

  92. Steffens MG, Boerman OC, de Mulder PH, Oyen WJ, Buijs WC, Witjes JA, et al. Phase I radioimmunotherapy of metastatic renal cell carcinoma with 131I-labeled chimeric monoclonal antibody G250. Clin Cancer Res. 1999;5:3268s–74.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egbert Oosterwijk Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oosterwijk, E., Boerman, O.C., Oosterwijk-Wakka, J.C., Oyen, W.J., Mulders, P.F.A. (2015). Carbonic Anhydrase IX and Monoclonal Antibody G250: Relevance as a Clinical and Biologic Target in Renal Cell Carcinoma. In: Bukowski, R., Figlin, R., Motzer, R. (eds) Renal Cell Carcinoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1622-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1622-1_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1621-4

  • Online ISBN: 978-1-4939-1622-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics