Skip to main content

Infectious Diseases

  • Chapter
  • First Online:
Handbook of Practical Immunohistochemistry

Abstract

Detection and identification of infectious microorganisms involves the use of conventional immunohistochemistry in addition to many other techniques including culture, serology, histochemistry, in situ hybridization, polymerase chain reaction and direct fluorescence antibody assays. This updated chapter takes into consideration all of these techniques while answering questions about bacterial, mycobacterial viral, fungal and protozoan testing. The best techniques and testing conditions are described for dozens of the most clinically relevant microorganisms. The role of immunohistochemistry versus alternative techniques is clearly presented. Photomicrographs present the characteristic feature of optimized staining techniques. Topics for each organism are discussed including the sensitivity and specificity of the tests, how fixation and retrieval affect the results, when protease should be considered in an assay, and how these tests could be incorporated into your clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacchi CE, Gown AM, Bacchi MM. Detection of infectious disease agents in tissue by immunocytochemistry. Braz J Med Biol Res. 1994;27(12):2803–20.

    CAS  PubMed  Google Scholar 

  2. Tatti KM, Greer P, White E, Shieh WJ, Guarner J, Ferebee-Harris T, Bartlett J, Ashford D, Hoffmaster A, Gallucci G, Vafai A, Popovic T, Zaki SR. Morphologic, immunologic, and molecular methods to detect bacillus anthracis in formalin-fixed tissues. Appl Immunohistochem Mol Morphol. 2006;14(2):234–43.

    Article  PubMed  Google Scholar 

  3. Ghosh N, Tomar I, Goel AK. A field usable qualitative anti-protective antigen enzyme-linked immunosorbent assay for serodiagnosis of human anthrax. Microbiol Immunol. 2013;57(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  4. Semenova VA, Schiffer J, Steward-Clark E, Soroka S, Schmidt DS, Brawner MM, Lyde F, Thompson R, Brown N, Foster L, Fox S, Patel N, Freeman AE, Quinn CP. Validation and long term performance characteristics of a quantitative enzyme linked immunosorbent assay (ELISA) for human anti-PA IgG. J Immunol Methods. 2012;376(1–2):97–107.

    Article  CAS  PubMed  Google Scholar 

  5. Shieh W-J, Guarner J, Paddock C, Greer P, Tatti K, Fischer M, Layton M, Philips M, Bresnitz E, Quinn CP, Popovic T, Perkins BA, Zaki SR, The Anthrax Bioterrorism Investigation Team. The critical role of pathology in the investigation of bioterrorism-related cutaneous anthrax. American Journal of Pathology. 2003;163:1901–10.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Guarner J, Jernigan J, Shieh W, Tatti K, Flannagan L, Stephens D, Popovic T, et al. Pathology and pathogenesis of bioterrorism-related inhalational anthrax. Am J Pathol. 2003;163:701–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Tsuruoka K, Tsuneoka H, Kawano M, Yanagihara M, Nojima J, Tanaka T, Yamamoto M, Ichihara K. Evaluation of IgG ELISA using N-lauroyl-sarcosine-soluble proteins of Bartonella henselae for highly specific serodiagnosis of cat scratch disease. Diagn Microbiol Infect Dis. 2012;74(3):230–5.

    Article  CAS  PubMed  Google Scholar 

  8. Pérez C, Maggi RG, Diniz PP, Breitschwerdt EB. Molecular and serological diagnosis of Bartonella infection in 61 dogs from the United States. J Vet Intern Med. 2011;25(4):805–10.

    Article  PubMed  Google Scholar 

  9. Caponetti GC, Pantanowitz L, Marconi S, Havens JM, Lamps LW, Otis CN. Evaluation of immunohistochemistry in identifying Bartonella henselae in cat-scratch disease. Am J Clin Pathol. 2009;131(2):250–6.

    Article  CAS  PubMed  Google Scholar 

  10. Ilhan F, Yener Z. Immunohistochemical detection of Brucella melitensis antigens in cases of naturally occurring abortions in sheep. J Vet Diagn Invest. 2008;20(6):803–6.

    Article  PubMed  Google Scholar 

  11. Markowicz M, Grilnberger E, Huber F, Leibl G, Abrahamian H, Gartner M, Huber M, Chott A, Reiter M, Stanek G. Case report: lymphogranuloma venereum proctitis-from rapid screening to molecular confirmation of a masked sexually transmitted disease. Diagn Microbiol Infect Dis. 2013;76(4):516–7.

    Article  CAS  PubMed  Google Scholar 

  12. Li ZY, Huang QL, Su SM, Zhong GM, Wu YM. Development of ELISAs for the detection of urogenital chlamydia trachomatis infection targeting the pORF5 protein. Biomed Environ Sci. 2013;26(3):169–75.

    CAS  PubMed  Google Scholar 

  13. Zhou Z, Wu YM, Chen LL, Liu GC, Liu LZ, Zhou AW, Zhang JH. Development and evaluation of a MAb-based ELISA for detection of Chlamydophila pneumoniae infection with variable domain 2 and 3 of the major outer membrane protein. Biomed Environ Sci. 2012;25(6):690–6.

    CAS  PubMed  Google Scholar 

  14. Zeidner NS, Carter LG, Monteneiri JA, Petersen JM, Schriefer M, Gage KL, Hall G, Chu MC. An outbreak of Francisella tularensis in captive prairie dogs: an immunohistochemical analysis. J Vet Diagn Invest. 2004;16(2):150–2.

    Article  PubMed  Google Scholar 

  15. Wabing HR. Comparison of immunohistochemical and modified Giemsa stains for demonstration of Helicobacter pylori infection in an African population. Afr Health Sci. 2002;2(2):52–5.

    Google Scholar 

  16. Ashton-Key M, Diss TC, Isaacson PG. Detection of Helicobacter pylori in gastric biopsy and resection specimens. J Clin Pathol. 1996;49(2):107–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ciesielska U, Dziegiel P, Jagoda E, Podhorska-Okolów M, Zabel M. The detection of Helicobacter pylori in paraffin sections using the PCR technique and various primers as compared to histological techniques. Folia Morphol (Warsz). 2004;63(2):229–31.

    Google Scholar 

  18. Jonkerst D, Stobberingh E, de Bruine A, Arends JW, Stockbrüg R. Evaluation of immunohistochemistry for the detection of Helicobacter pylori in gastric mucosal biopsies. Journal of Infection. 1997;35:149–54.

    Article  Google Scholar 

  19. Wild CJ, Greenlee JJ, Bolin CA, Barnett JK, Haake DA, Cheville NF. An improved immunohistochemical diagnostic technique for canine leptospirosis using antileptospiral antibodies on renal tissue. J Vet Diagn Invest. 2002;14(1):20–4.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Saglam YS, Yener Z, Temur A, Yalcin E. Immunohistochemical detection of leptospiral antigens in cases of naturally occurring abortions in sheep. Small Rumin Res. 2008;74(1-3):119–22.

    Article  Google Scholar 

  21. Lebech A, Clemmensen O, Hansen K. Comparison of in vitro culture, immunohistochemical staining, and PCR for detection of Borrelia burgdorferi in tissue from experimentally infected animals. J Clin Microbiol. 1995;33(9):2328–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Schmengler K, Goldmann T, Brade L, Sánchez Carballo PM, Albrecht S, Brade H, Kosma P, Sahly H, Hauber HP, Länger F, Meyer R, Welte T, Zähringer U. Monoclonal antibody S60-4-14 reveals diagnostic potential in the identification of Pseudomonas aeruginosa in lung tissues of cystic fibrosis patients. Eur J Cell Biol. 2010;89(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  23. White WL, Patrick JD, Miller LR. Evaluation of immunoperoxidase techniques to detect Rickettsia rickettsii in fixed tissue sections. Am J Clin Pathol. 1994;101(6):747–52.

    CAS  PubMed  Google Scholar 

  24. Behrhof W, Springer E, Bräuninger W, Kirkpatrick CJ, Weber A. PCR testing for Treponema pallidum in paraffin-embedded skin biopsy specimens: test design and impact on the diagnosis of syphilis. J Clin Pathol. 2008;61(3):390–5.

    Article  CAS  PubMed  Google Scholar 

  25. Buffet M, Grange PA, Gerhardt P, et al. Diagnosing treponema pallidum in secondary syphilis by PCR and immunohistochemistry. J Invest Dermatol. 2007;127(10):2345–50.

    Article  CAS  PubMed  Google Scholar 

  26. Hoang MP, High WA, Molberg KH. Secondary syphilis: a histologic and immunohistochemical evaluation. J Cutan Pathol. 2004;31(9):595–9.

    Article  PubMed  Google Scholar 

  27. Putri I, Mercer SE, Phelps RG, Levitt JO. False-negative anti-treponemal immunohistochemistry in secondary syphilis. Int J Dermatol. 2013;52(2):172–6.

    Article  PubMed  Google Scholar 

  28. Aparicio MA, Santos-Briz A. Unexpected immunostaining of Mycobaterium leprae with a polyclonal antibody against Treponema pallidum. Am J Dermatopathol. 2012;34(5):559–61.

    Article  PubMed  Google Scholar 

  29. Guarner J, Shieh WJ, Greer PW, Gabastou JM, Chu M, Hayes E, Nolte KB, Zaki SR. Immunohistochemical detection of Yersinia pestis in formalin-fixed, paraffin-embedded tissue. Am J Clin Pathol. 2002;117(2):205–9.

    Article  PubMed  Google Scholar 

  30. Szeredi L, Glávits R, Tenk M, Jánosi S. Application of anti-BCG antibody for rapid immunohistochemical detection of bacteria, fungi and protozoa in formalin-fixed paraffin-embedded tissue samples. Acta Vet Hung. 2008;56(1):89–99.

    Article  PubMed  Google Scholar 

  31. Prinz BM, Michaelis S, Kettelhack N, Mueller B, Burg G, Kempf W. Subcutaneous infection with Mycobacterium abscessus in a renal transplant recipient. Dermatology. 2004;208(3):259–61.

    Article  CAS  PubMed  Google Scholar 

  32. Schettini AP, Ferreira LC, Milagros R, Schettini MC, Pennini SN, Rebello PB. Enhancement in the histological diagnosis of leprosy in patients with only sensory loss by demonstration of mycobacterial antigens using anti-BCG polyclonal antibodies. Int J Lepr Other Mycobact Dis. 2001;69(4):335–40.

    CAS  PubMed  Google Scholar 

  33. Martinson SA, Hanna PE, Ikede BO, Lewis JP, Miller LM, Keefe GP, Mckenna SLB. Comparison of bacterial culture, histopathology, and immunohistochemistry for the diagnosis of Johne’s disease in culled dairy cows. Journal of veterinary diagnostic investigation. 2008;20:51–7.

    Article  PubMed  Google Scholar 

  34. Huntley JFJ, Whitlock RH, Bannantine JP, Stabel JR. Comparison of diagnostic detection methods for Mycobacterium avium subsp. paratuberculosis in North American Bison. Vet Pathol. 2005;42:42–51.

    Article  CAS  PubMed  Google Scholar 

  35. Wen Y, Xing Y, Yuan LC, Liu J, Zhang Y, Li Y. Whole-blood nested-PCR amplification of M. leprae-specific DNA for early diagnosis of leprosy. Am J Trop Med Hyg. 2013;88(5):918–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Medeiros MF, Jardim MR, Vital RT, Costa Nery JA, Sales AM, Moraes MO, Chimelli LM, Pessolani MC, Ferreira H, Sarno EN, Antunes SL. An attempt to improve pure neural leprosy diagnosis using immunohistochemistry tests in peripheral nerve biopsy specimens. Appl Immunohistochem Mol Morphol. 2014;22(3):222–30.

    Article  CAS  Google Scholar 

  37. Adegboye DS, Rasberry U, Halbur PG, Andrews JJ, Rosenbusch RF. Monoclonal antibody-based immunohistochemical technique for the detection of Mycoplasma bovis in formalin-fixed, paraffin-embedded calf lung tissues. J Vet Diagn Invest. 1995;7(2):261–5.

    Article  CAS  PubMed  Google Scholar 

  38. Mustafa T, Wiker HG, Mfinanga SG, Mørkve O, Sviland L. Immunohistochemistry using a Mycobacterium tuberculosis complex specific antibody for improved diagnosis of tuberculous lymphadenitis. Mod Pathol. 2006;19(12):1606–14.

    Article  CAS  PubMed  Google Scholar 

  39. Goel MM, Budhwar P. Immunohistochemical localization of Mycobacterium tuberculosis complex antigen with antibody to 38 kda antigen versus Ziehl Neelsen staining in tissue granulomas of extrapulmonary tuberculosis. Indian J Tuberc. 2007;54:24–9.

    PubMed  Google Scholar 

  40. Wilkens L, Werner M, Nolte M, Wasielewski RV, Verhagen W, Flik J, Klempnauer J, Georgii A. Influence of formalin fixation on the detection of cytomegalovirus by polymerase chain reaction in immunocompromised patients and correlation to in situ hybridization, immunohistochemistry, and serological data. Diagn Mol Pathol. 1994;3(3):156–62.

    Article  CAS  PubMed  Google Scholar 

  41. Strickler J, Manivel J, Copenhaver C, Kubic V. Comparison of in situ hybridization and immunohistochemistry for detection of cytomegalovirus and herpes simplex virus. Human Pathology. 1990;21:443–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bajanowski T, Wiegand P, Brinkmann B. Comparison of different methods for CMV detection. Int J Leg Med. 1994;106:219–22.

    Article  CAS  Google Scholar 

  43. Mills AM, Guo FP, Copland AP, Pai RK, Pinsky BA. A comparison of CMV detection in gastrointestinal mucosal biopsies using immunohistochemistry and PCR performed on formalin-fixed, paraffin-embedded tissue. Am J Surg Pathol. 2013;37(7):995–1000.

    Article  PubMed  Google Scholar 

  44. Lu DY, Qian J, Easley KA, Waldrop SM, Cohen C. Automated in situ hybridization and immunohistochemistry for cytomegalovirus detection in paraffin-embedded tissue sections. Appl Immunohistochem Mol Morphol. 2009;17(2):158–64.

    Article  CAS  PubMed  Google Scholar 

  45. Truong CD, Feng W, Li W, Khoury T, Li Q, Alrawi S, Yu Y, Xie K, Yao J, Tan D. Characteristics of Epstein-Barr virus-associated gastric cancer: a study of 235 cases at a comprehensive cancer center in U.S.A. J Exp Clin Cancer Res. 2009;28:14.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Fanaian NK, Cohen C, Waldrop S, Wang J, Shehata BM. Epstein-Barr virus (EBV)-encoded RNA: automated in-situ hybridization (ISH) compared with manual ISH and immunohistochemistry for detection of EBV in pediatric lymphoproliferative disorders. Pediatr Dev Pathol. 2009;12(3):195–9.

    Article  PubMed  Google Scholar 

  47. Suh N, Liapis H, Misdraji J, Brunt EM, Wang HL. Epstein-Barr virus hepatitis: diagnostic value of in situ hybridization, polymerase chain reaction, and immunohistochemistry on liver biopsy from immunocompetent patients. Am J Surg Pathol. 2007;31(9):1403–9.

    Article  PubMed  Google Scholar 

  48. van Hemel BM, Suurmeijer AJ. Effective application of the methanol-based PreservCyt(™) fixative and the Cellient(™) automated cell block processor to diagnostic cytopathology, immunocytochemistry, and molecular biology. Diagn Cytopathol. 2013;41(8):734–41.

    Article  PubMed  Google Scholar 

  49. Benkoël L, Biagini P, Dodero F, De Lamballerie X, De Micco P, Chamlian A. Immunohistochemical detection of C-100 hepatitis C virus antigen in formaldehyde-fixed paraffin-embedded liver tissue. Correlation with serum, tissue and in situ RT-PCR results. Eur J Histochem. 2004;48(2):185–90.

    Article  PubMed  Google Scholar 

  50. Qian X, Guerrero RB, Plummer TB, Alves VF, Lloyd RV. Detection of hepatitis C virus RNA in formalin-fixed paraffin-embedded sections with digoxigenin-labeled cRNA probes. Diagn Mol Pathol. 2004;13(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  51. González-Peralta RP, Fang JW, Davis GL, Gish R, Tsukiyama-Kohara K, Kohara M, Mondelli MU, Lesniewski R, Phillips MI, Mizokami M, et al. Optimization for the detection of hepatitis C virus antigens in the liver. J Hepatol. 1994;20(1):143–7.

    Article  PubMed  Google Scholar 

  52. Pitalia AK, Liu-Yin JA, Freemont AJ, Morris DJ, Fitzmaurice RJ. Immunohistological detection of human herpes virus 6 in formalin-fixed, paraffin-embedded lung tissues. J Med Virol. 1993;41(2):103–7.

    Article  CAS  PubMed  Google Scholar 

  53. Patel RM, Goldblum JR, Hsi ED. Immunohistochemical detection of human herpes virus-8 latent nuclear antigen-1 is useful in the diagnosis of Kaposi sarcoma. Mod Pathol. 2004;17(4):456–60.

    Article  PubMed  Google Scholar 

  54. Haltas H, Bayrak R, Yenidunya S, Yildirim U. The immunohistochemical detection of P16 and HPV L1 capsid protein on cell block sections from residual PapSpin liquid-based gynecology cytology specimens as a diagnostic and prognostic tool. Eur Rev Med Pharmacol Sci. 2012;16(11):1588–95.

    CAS  PubMed  Google Scholar 

  55. Jeon JH, Shin DM, Cho SY, Song KY, Park NH, Kang HS, Kim YD, Kim IG. Immunocytochemical detection of HPV16 E7 in cervical smear. Exp Mol Med. 2007;39(5):621–8.

    Article  CAS  PubMed  Google Scholar 

  56. Mulvany NJ, Allen DG, Wilson SM. Diagnostic utility of p16INK4a: a reappraisal of its use in cervical biopsies. Pathology. 2008;40(4):335–44.

    Article  CAS  PubMed  Google Scholar 

  57. Oda Y, Katsuda S, Okada Y, Kawahara EI, Ooi A, Kawashima A, Nakanishi I. Detection of human cytomegalovirus, Epstein-Barr virus, and herpes simplex virus in diffuse interstitial pneumonia by polymerase chain reaction and immunohistochemistry. Am J Clin Pathol. 1994;102(4):495–502.

    CAS  PubMed  Google Scholar 

  58. He F, Du Q, Ho Y, Kwang J. Immunohistochemical detection of Influenza virus infection in formalin-fixed tissues with anti-H5 monoclonal antibody recognizing FFWTILKP. J Virol Methods. 2009;155(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  59. Samsioe A, Papadogiannakis N, Hultman T, Sjöholm A, Klitz W, Niklasson B. Ljungan virus present in intrauterine fetal death diagnosed by both immunohistochemistry and PCR. Birth Defects Res A Clin Mol Teratol. 2009;85(3):227–9.

    Article  CAS  PubMed  Google Scholar 

  60. Zaki SA. Detection of human parvovirus B19 in cancer patients using ELISA and real-time PCR. Indian J Med Microbiol. 2012;30(4):407–10.

    Article  CAS  PubMed  Google Scholar 

  61. Santonja C, Nieto-González G, Santos-Briz Á, Gutiérrez Zufiaurre Mde L, Cerroni L, Kutzner H, Requena L. Immunohistochemical detection of parvovirus B19 in “gloves and socks” papular purpuric syndrome: direct evidence for viral endothelial involvement. Report of three cases and review of the literature. Am J Dermatopathol. 2011;33(8):790–5.

    Google Scholar 

  62. Escher F, Kuhl U, Sabi T, Suckau L, Lassner D, Poller W, Schultheiss HP, Noutsias M. Immunohistological detection of Parvovirus B19 capsid proteins in endomyocardial biopsies from dilated cardiomyopathy patients. Med Sci Monit. 2008;14(6):CR333–338.

    PubMed  Google Scholar 

  63. Ogawa T, Gamoh K, Aoki H, Kobayashi R, Etoh M, Senda M, Hirayama N, Nishimura M, Shiraishi R, Servat A, Cliquet F. Validation and standardization of virus neutralizing test using indirect immunoperoxidase technique for the quantification of antibodies to rabies virus. Zoonoses Public Health. 2008;55(6):323–7.

    Article  CAS  PubMed  Google Scholar 

  64. Lembo T, Niezgoda M, Velasco-Villa A, Cleaveland S, Ernest E, Rupprecht CE. Evaluation of a direct, rapid immunohistochemical test for rabies diagnosis. Emerg Infect Dis. 2006;12(2):310–3.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Inoue S, Sato Y, Hasegawa H, Noguchi A, Yamada A, Kurata T, Iwasaki T. Cross-reactive antigenicity of nucleoproteins of lyssaviruses recognized by a monospecific antirabies virus nucleoprotein antiserum on paraffin sections of formalin-fixed tissues. Pathol Int. 2003;53(8):525–33.

    Article  CAS  PubMed  Google Scholar 

  66. Wacharapluesadee S, Ruangvejvorachai P, Hemachudha T. A simple method for detection of rabies viral sequences in 16-year old archival brain specimens with one-week fixation in formalin. J Virol Methods. 2006;134(1–2):267–71.

    Article  CAS  PubMed  Google Scholar 

  67. Donaldson KA, Kramer MF, Lim DV. A rapid detection method for Vaccinia virus, the surrogate for smallpox virus. Biosens Bioelectron. 2004;20(2):322–7.

    Article  CAS  PubMed  Google Scholar 

  68. Wilson DA, Yen-Lieberman B, Schindler S, Asamoto K, Schold JD, Procop GW. Should varicella-zoster virus culture be eliminated? A comparison of direct immunofluorescence antigen detection, culture, and PCR, with a historical review. J Clin Microbiol. 2012;50(12):4120–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Nikkels AF, Debrus S, Sadzot-Delvaux C, Piette J, Rentier B. Piérard GE Immunohistochemical identification of varicella-zoster virus gene 63-encoded protein (IE63) and late (gE) protein on smears and cutaneous biopsies: implications for diagnostic use. J Med Virol. 1995;47(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  70. Chan EL, Brandt K, Horsman GB. Comparison of Chemicon SimulFluor direct fluorescent antibody staining with cell culture and shell vial direct immunoperoxidase staining for detection of herpes simplex virus and with cytospin direct immunofluorescence staining for detection of varicella-zoster virus. Clin Diagn Lab Immunol. 2001;8(5):909–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Zaki S, Shieh W, Greer P, Goldsmith C, Ferebee T, Katshitshi J, Tshioko F, et al. A novel immunohistochemical assay for the detection of ebola virus in skin: implications for diagnosis, spread, and surveillance of ebola hemorrhagic fever. J Infect Dis. 1999;179S:36–47.

    Article  Google Scholar 

  72. Smedley RC, Patterson JS, Miller R, Massey JP, Wise AG, Maes RK, Wu P, Kaneene JB, Kiupel M. Sensitivity and specificity of monoclonal and polyclonal immunohistochemical staining for West Nile virus in various organs from American crows (Corvus brachyrhynchos). BMC Infect Dis. 2007;7:49.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Bhatnagar J, Guarner J, Paddock CD, Shieh WJ, Lanciotti RS, Marfin AA, Campbell GL, Zaki SR. Detection of West Nile virus in formalin-fixed, paraffin-embedded human tissues by RT-PCR: a useful adjunct to conventional tissue-based diagnostic methods. J Clin Virol. 2007;38(2):106–11.

    Article  CAS  PubMed  Google Scholar 

  74. Bialek R, Ernst F, Dietz K, Najvar LK, Knobloch J, Graybill JR, Schaumburg-Lever G. Comparison of staining methods and a nested PCR assay to detect Histoplasma capsulatum in tissue sections. Am J Clin Pathol. 2002;117(4):597–603.

    Article  CAS  PubMed  Google Scholar 

  75. Verweij PE, Smedts F, Poot T, Bult P, Hoogkamp-Korstanje JA, Meis JF. Immunoperoxidase staining for identification of Aspergillus species in routinely processed tissue sections. J Clin Pathol. 1996;49(10):798–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Schuetz AN, Cohen C. Aspergillus immunohistochemistry of culture-proven fungal tissue isolates shows high cross-reactivity. Appl Immunohistochem Mol Morphol. 2009;17(6):524–9.

    Article  PubMed  Google Scholar 

  77. Fukuzawa M, Inaba H, Hayama M, Sakaguchi N, Sano K, Ito M, Hotchi M. Improved detection of medically important fungi by immunoperoxidase staining with polyclonal antibodies. Virchows Arch. 1995;427(4):407–14.

    Article  CAS  PubMed  Google Scholar 

  78. Hayden RT, Qian X, Roberts GD, Lloyd RV. In situ hybridization for the identification of yeast-like organisms in tissue sections. Diagn Mol Pathol. 2001;10(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  79. Hayden RT, Qian X, Procop GW, et al. In situ hybridization for the identification of filamentous fungi in tissue sections. Diagn Mol Pathol. 2002;11(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  80. Blumenfeld W, Kovacs JA. Use of a monoclonal antibody to detect Pneumocystis carinii in induced sputum and bronchoalveolar lavage fluid by immunoperoxidase staining. Arch Pathol Lab Med. 1988;112(12):1233–6.

    CAS  PubMed  Google Scholar 

  81. Arastéh KN, Simon V, Musch R, Weiss RO, Przytarski K, Futh UM, Pleuger F, Huhn D, L’age MP. Sensitivity and specificity of indirect immunofluorescence and Grocott-technique in comparison with immunocytology (alkaline phosphatase anti alkaline phosphatase = APAAP) for the diagnosis of Pneumocystis carinii in broncho-alveolar lavage (BAL). Eur J Med Res. 1998;3(12):559–63.

    PubMed  Google Scholar 

  82. Amato VS, Tuon FF, de Andrade HF, Jr BH, Pagliari C, Fernandes ER, Duarte MI, Neto VA, Zampieri RA, Floeter-Winter LM, Celeste BJ, Oliveira J, Quiroga MM, Mascheretti M, Boulos M. Immunohistochemistry and polymerase chain reaction on paraffin-embedded material improve the diagnosis of cutaneous leishmaniasis in the Amazon region. Int J Dermatol. 2009;48(10):1091–5.

    Article  CAS  PubMed  Google Scholar 

  83. de Arruda MM, Figueiredo FB, Cardoso FA, Hiamamoto RM, Brazuna JC, de Oliveira MR, Noronha EF, Romero GA. Validity and reliability of enzyme immunoassays using Leishmania major or L. infantum antigens for the diagnosis of canine visceral leishmaniasis in Brazil. PLoS One. 2013;8(7):e69988.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Silva LA, Romero HD, Fagundes A, Nehme N, Fernandes O, Rodrigues V, Costa RT, Prata A. Use of the polymerase chain reaction for the diagnosis of asymptomatic Leishmania infection in a visceral leishmaniasis-endemic area. Rev Inst Med Trop Sao Paulo. 2013;55(2):101–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk M. Elston MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elston, D.M., Gibson, L.E., Kutzner, H. (2015). Infectious Diseases. In: Lin, F., Prichard, J. (eds) Handbook of Practical Immunohistochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1578-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1578-1_32

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1577-4

  • Online ISBN: 978-1-4939-1578-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics