Skip to main content

Liver Magnetic Resonance Elastography Technique

  • Chapter
  • First Online:
Magnetic Resonance Elastography

Abstract

Mechanical properties are promising surrogates for monitoring and characterizing various pathophysiologic conditions of cells and tissues. The mechanical properties of liver tissue are strongly correlated with the extent of fibrosis, and perhaps with increased hepatic vascular resistance and the associated increase of portal venous pressure. With recent advances in biomedical imaging, the ability to quantify in vivo liver stiffness with the development of MR elastography (MRE) is beginning to see widespread clinical use for assessing hepatic fibrosis as an alternative to biopsy. In this chapter, we will introduce the practical in vivo hepatic MRE technique for clinical investigations in humans, which is the culmination of technology development and optimization involving driver design (generating shear waves in the liver), pulse sequence design, imaging parameters, inversion algorithms, and image analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuppan D, Popov Y. Hepatic fibrosis: from bench to bedside. J Gastroenterol Hepatol. 2002;17 Suppl 3:S300–5.

    Article  PubMed  Google Scholar 

  2. Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta. 2006;364(1–2):33–60.

    Article  PubMed  CAS  Google Scholar 

  3. Fowell AJ, Iredale JP. Emerging therapies for liver fibrosis. Dig Dis. 2006;24(1–2):174–83.

    Article  PubMed  Google Scholar 

  4. Friedman SL, Bansal MB. Reversal of hepatic fibrosis – fact or fantasy? Hepatology. 2006;43(2 Suppl 1):S82–8.

    Article  PubMed  CAS  Google Scholar 

  5. Talwalkar JA, Yin M, Fidler JL, Sanderson SO, Kamath PS, Ehman RL. Magnetic resonance imaging of hepatic fibrosis: emerging clinical applications. Hepatology. 2008;47(1):332–42.

    Article  PubMed  Google Scholar 

  6. Salvatore V, Borghi A, Peri E, Colecchia A, Li Bassi S, Montrone L, et al. Relationship between hepatic haemodynamics assessed by Doppler ultrasound and liver stiffness. Dig Liver Dis. 2012;44(2):154–9 [Comparative Study].

    Article  PubMed  Google Scholar 

  7. Lerner RM, Huang SR, Parker KJ. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990;16(3):231–9.

    Article  PubMed  CAS  Google Scholar 

  8. Sandrin L, Tanter M, Gennisson JL, Catheline S, Fink M. Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(4):436–46.

    Article  PubMed  Google Scholar 

  9. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854–7.

    Article  PubMed  CAS  Google Scholar 

  10. Bohte AE, de Niet A, Jansen L, Bipat S, Nederveen AJ, Verheij J, et al. Non-invasive evaluation of liver fibrosis: a comparison of ultrasound-based transient elastography and MR elastography in patients with viral hepatitis B and C. Eur Radiol. 2013;25.

    Google Scholar 

  11. Bensamoun SF, Wang L, Robert L, Charleux F, Latrive JP, Ho Ba Tho MC. Measurement of liver stiffness with two imaging techniques: magnetic resonance elastography and ultrasound elastometry. J Magn Reson Imaging. 2008;28(5):1287–92.

    Article  PubMed  Google Scholar 

  12. Huwart L, Sempoux C, Vicaut E, Salameh N, Annet L, Danse E, et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology. 2008;135(1):32–40 [Clinical Trial Comparative Study Research Support, Non-U.S. Gov’t Validation Studies].

    Article  PubMed  Google Scholar 

  13. Oudry J, Chen J, Glaser KJ, Miette V, Sandrin L, Ehman RL. Cross-validation of magnetic resonance elastography and ultrasound-based transient elastography: a preliminary phantom study. J Magn Reson Imaging. 2009;30(5):1145–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705–13.

    Article  PubMed  Google Scholar 

  15. Fraquelli M, Rigamonti C, Casazza G, Conte D, Donato MF, Ronchi G, et al. Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut. 2007;56(7):968–73.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Castera L, Vergniol J, Foucher J, Le Bail B, Chanteloup E, Haaser M, et al. Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology. 2005;128(2):343–50.

    Article  PubMed  Google Scholar 

  17. Ziol M, Handra-Luca A, Kettaneh A, Christidis C, Mal F, Kazemi F, et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology. 2005;41(1):48–54.

    Article  PubMed  Google Scholar 

  18. Foucher J, Chanteloup E, Vergniol J, Castera L, Le Bail B, Adhoute X, et al. Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study. Gut. 2006;55(3):403–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Ganne-Carrie N, Ziol M, de Ledinghen V, Douvin C, Marcellin P, Castera L, et al. Accuracy of liver stiffness measurement for the diagnosis of cirrhosis in patients with chronic liver diseases. Hepatology. 2006;44(6):1511–7.

    Article  PubMed  Google Scholar 

  20. Coco B, Oliveri F, Maina AM, Ciccorossi P, Sacco R, Colombatto P, et al. Transient elastography: a new surrogate marker of liver fibrosis influenced by major changes of transaminases. J Viral Hepat. 2007;14(5):360–9.

    Article  PubMed  CAS  Google Scholar 

  21. Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack Jr CR, et al. Magnetic resonance elastography of the brain. Neuroimage. 2008;39(1):231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Green MA, Bilston LE, Sinkus R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 2008;21(7):755–64.

    Article  PubMed  Google Scholar 

  23. Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed. 2008;21(3):265–71.

    Article  PubMed  Google Scholar 

  24. McKnight AL, Kugel JL, Rossman PJ, Manduca A, Hartmann LC, Ehman RL. MR elastography of breast cancer: preliminary results. AJR Am J Roentgenol. 2002;178(6):1411–7.

    Article  PubMed  Google Scholar 

  25. Van Houten EE, Doyley MM, Kennedy FE, Weaver JB, Paulsen KD. Initial in vivo experience with steady-state subzone-based MR elastography of the human breast. J Magn Reson Imaging. 2003;17(1):72–85.

    Article  PubMed  Google Scholar 

  26. Sinkus R, Siegmann K, Xydeas T, Tanter M, Claussen C, Fink M. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med. 2007;58(6):1135–44.

    Article  PubMed  Google Scholar 

  27. Plewes DB, Bishop J, Samani A, Sciarretta J. Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys Med Biol. 2000;45(6):1591–610.

    Article  PubMed  CAS  Google Scholar 

  28. Kolipaka A, McGee KP, Araoz PA, Glaser KJ, Manduca A, Romano AJ, et al. MR elastography as a method for the assessment of myocardial stiffness: comparison with an established pressure–volume model in a left ventricular model of the heart. Magn Reson Med. 2009;62(1):135–40.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sack I, Rump J, Elgeti T, Samani A, Braun J. MR elastography of the human heart: noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations. Magn Reson Med. 2009;61(3):668–77.

    Article  PubMed  Google Scholar 

  30. McGee KP, Hubmayr RD, Ehman RL. MR elastography of the lung with hyperpolarized 3He. Magn Reson Med. 2008;59(1):14–8.

    Article  PubMed  Google Scholar 

  31. Ringleb SI, Chen Q, Lake DS, Manduca A, Ehman RL, An KN. Quantitative shear wave magnetic resonance elastography: comparison to a dynamic shear material test. Magn Reson Med. 2005;53(5):1197–201.

    Article  PubMed  Google Scholar 

  32. Talwalkar JA, Yin M, Venkatesh S, Rossman PJ, Grimm RC, Manduca A, et al. Feasibility of in vivo MR elastographic splenic stiffness measurements in the assessment of portal hypertension. AJR Am J Roentgenol. 2009;193(1):122–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shah NS, Kruse SA, Lager DJ, Farell-Baril G, Lieske JC, King BF, et al. Evaluation of renal parenchymal disease in a rat model with magnetic resonance elastography. Magn Reson Med. 2004;52(1):56–64.

    Article  PubMed  Google Scholar 

  34. Shi Y, Glser KJ, Venkatesh SK, Ben-Abraham EI, Ehman RL. Feasibility of using 3D MR elastography to determine pancreatic stiffness in healthy volunteers. J Magn Reson Imaging. 2014. Accepted.

    Google Scholar 

  35. Yin M, Chen J, Glaser KJ, Talwalkar JA, Ehman RL. Abdominal magnetic resonance elastography. Top Magn Reson Imaging. 2009;20(2):79–87.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mariappan YK, Venkatesh SK, Glaser JK, McGee KP, Ehman RL, editors. MR Elastography of liver with iron overload: development, evaluation and preliminary clinical experience with improved spin echo and spin echo EPI sequences. The 21st annual conference of international society for magnetic resonance in medicine; 2013; Salt Lake City, Utah.

    Google Scholar 

  37. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: clinical applications. J Comput Assist Tomogr. 2013;37(6):887–96.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging. 2013;37(3):544–55.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huwart L, Peeters F, Sinkus R, Annet L, Salameh N, ter Beek LC, et al. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed. 2006;19(2):173–9.

    Article  PubMed  Google Scholar 

  40. Salameh N, Peeters F, Sinkus R, Abarca-Quinones J, Annet L, Ter Beek LC, et al. Hepatic viscoelastic parameters measured with MR elastography: correlations with quantitative analysis of liver fibrosis in the rat. J Magn Reson Imaging. 2007;26(4):956–62.

    Article  PubMed  Google Scholar 

  41. Huwart L, Sempoux C, Vicaut E, Salameh N, Annet L, Danse E, et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology. 2008;135(1):32–40.

    Article  PubMed  Google Scholar 

  42. Asbach P, Klatt D, Hamhaber U, Braun J, Somasundaram R, Hamm B, et al. Assessment of liver viscoelasticity using multifrequency MR elastography. Magn Reson Med. 2008;60(2):373–9.

    Article  PubMed  Google Scholar 

  43. Klatt D, Asbach P, Rump J, Papazoglou S, Somasundaram R, Modrow J, et al. In vivo determination of hepatic stiffness using steady-state free precession magnetic resonance elastography. Invest Radiol. 2006;41(12):841–8.

    Article  PubMed  Google Scholar 

  44. Rouviere O, Yin M, Dresner MA, Rossman PJ, Burgart LJ, Fidler JL, et al. MR elastography of the liver: preliminary results. Radiology. 2006;240(2):440–8.

    Article  PubMed  Google Scholar 

  45. Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol. 2007;5(10):1207–13.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Venkatesh SK, Yin M, Glockner JF, Takahashi N, Araoz PA, Talwalkar JA, et al. MR elastography of liver tumors: preliminary results. AJR Am J Roentgenol. 2008;190(6):1534–40.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yin M, Woollard J, Wang X, Torres VE, Harris PC, Ward CJ, et al. Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med. 2007;58(2):346–53.

    Article  PubMed  Google Scholar 

  48. Bernstein MA, Ikezaki Y. Comparison of phase-difference and complex-difference processing in phase-contrast MR angiography. J Magn Reson Imaging. 1991;1:725–9.

    Article  PubMed  CAS  Google Scholar 

  49. Muthupillai R, Rossman PJ, Lomas DJ, Greenleaf JF, Riederer SJ, Ehman RL. Magnetic resonance imaging of transverse acoustic strain waves. Magn Reson Med. 1996;36(2):266–74.

    Article  PubMed  CAS  Google Scholar 

  50. Rump J, Klatt D, Braun J, Warmuth C, Sack I. Fractional encoding of harmonic motions in MR elastography. Magn Reson Med. 2007;57(2):388–95.

    Article  PubMed  Google Scholar 

  51. Glaser KJ, Felmlee JP, Ehman RL. Rapid MR elastography using selective excitations. Magn Reson Med. 2006;55(6):1381–9.

    Article  PubMed  Google Scholar 

  52. Sinkus R, Tanter M, Catheline S, Lorenzen J, Kuhl C, Sondermann E, et al. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med. 2005;53(2):372–87.

    Article  PubMed  CAS  Google Scholar 

  53. Maderwald S, Uffmann K, Galban CJ, de Greiff A, Ladd ME. Accelerating MR elastography: a multiecho phase-contrast gradient-echo sequence. J Magn Reson Imaging. 2006;23(5):774–80.

    Article  PubMed  Google Scholar 

  54. Bieri O, Maderwald S, Ladd ME, Scheffler K. Balanced alternating steady-state elastography. Magn Reson Med. 2006;55(2):233–41.

    Article  PubMed  CAS  Google Scholar 

  55. Huwart L, Salameh N, ter Beek L, Vicaut E, Peeters F, Sinkus R, et al. MR elastography of liver fibrosis: preliminary results comparing spin-echo and echo-planar imaging. Eur Radiol. 2008;18(11):2535–41.

    Article  PubMed  Google Scholar 

  56. Mariappan YK, Glaser KJ, Hubmayr RD, Manduca A, Ehman RL, McGee KP. MR elastography of human lung parenchyma: technical development, theoretical modeling and in vivo validation. J Magn Reson Imaging. 2011;33(6):1351–61 [Research Support, N.I.H., Extramural].

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mariappan YK, Kolipaka A, Manduca A, Hubmayr RD, Ehman RL, Araoz P, et al. Magnetic resonance elastography of the lung parenchyma in an in situ porcine model with a noninvasive mechanical driver: correlation of shear stiffness with trans-respiratory system pressures. Magn Reson Med. 2012;67(1):210–7 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  Google Scholar 

  58. Aletras AH, Ding S, Balaban RS, Wen H. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson. 1999;137(1):247–52 [Comparative Study].

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Robert B, Sinkus R, Gennisson JL, Fink M, editors. Application of DENSE MR-Elastography to the human heart: first in vivo results. In: The 17th annual conference of the international society for magnetic resonance in medicine; 2009; Honolulu, Hawaii, USA.

    Google Scholar 

  60. Yin M, Rouviere O, Glaser KJ, Ehman RL. Diffraction-biased shear wave fields generated with longitudinal magnetic resonance elastography drivers. Magn Reson Imaging. 2008;26(6):770–80.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Papazoglou S, Hamhaber U, Braun J, Sack I. Algebraic Helmholtz inversion in planar magnetic resonance elastography. Phys Med Biol. 2008;53(12):3147–58.

    Article  PubMed  CAS  Google Scholar 

  62. Yin M, Glaser JK, Talwalkar JA, Manduca A, Ehman RL, editors. Validity of a 2-D wave field model in MR elastography of the liver. In: Proceedings of the international society for magnetic resonance in medicine; 2009; Honolulu, Hawaii, USA.

    Google Scholar 

  63. Manduca A, Lake DS, Kruse SA, Ehman RL. Spatio-temporal directional filtering for improved inversion of MR elastography images. Med Image Anal. 2003;7:465–73.

    Article  PubMed  CAS  Google Scholar 

  64. Manduca A, Muthupillai R, Rossman PJ, Greenleaf JF, Ehman RL. Visualization of tissue elasticity by magnetic resonance elastography. In: Hones K, Kinikis R, editors. Visualization in biomedical computing. Berlin: Springer; 1996. p. 63–8.

    Chapter  Google Scholar 

  65. Oliphant TE, Manduca A, Ehman RL, Greenleaf JF. Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation. Magn Reson Med. 2001;45(2):299–310.

    Article  PubMed  CAS  Google Scholar 

  66. Van Houten EE, Miga MI, Weaver JB, Kennedy FE, Paulsen KD. Three-dimensional subzone-based reconstruction algorithm for MR elastography. Magn Reson Med. 2001;45(5):827–37.

    Article  PubMed  Google Scholar 

  67. Van Houten EE, Doyley MM, Kennedy FE, Paulsen KD, Weaver JB. A three-parameter mechanical property reconstruction method for MR-based elastic property imaging. IEEE Trans Med Imaging. 2005;24(3):311–24.

    Article  PubMed  Google Scholar 

  68. Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal. 2001;5(4):237–54.

    Article  PubMed  CAS  Google Scholar 

  69. Dzyubak B, Glaser K, Yin M, Talwalkar J, Chen J, Manduca A, et al. Automated liver stiffness measurements with magnetic resonance elastography. J Magn Reson Imaging. 2013;38(2):371–9 [Research Support, N.I.H., Extramural].

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yin M, Talwalkar JA, Venkatesh SK, Ehman RL, editors. MR elastography of dynamic postprandial hepatic stiffness augmentation in chronic liver disease. In: Proceedings of the International Society for Magnetic Resonance in Medicine; 2009; Honolulu, Hawaii, USA.

    Google Scholar 

  71. Klatt D, Hamhaber U, Asbach P, Braun J, Sack I. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol. 2007;52:7281–94.

    Article  PubMed  Google Scholar 

  72. Huwart L, Sempoux C, Salameh N, Jamart J, Annet L, Sinkus R, et al. Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ratio index. Radiology. 2007;245(2):458–66.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yin, M., Manduca, A., Grimm, R.C. (2014). Liver Magnetic Resonance Elastography Technique. In: Venkatesh, S., Ehman, R. (eds) Magnetic Resonance Elastography. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1575-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1575-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1574-3

  • Online ISBN: 978-1-4939-1575-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics