Skip to main content

Importance of Fluorescent In Situ Hybridization in Rodent Tumors

  • Chapter
  • First Online:
Technical Aspects of Toxicological Immunohistochemistry

Abstract

Cancer is characterized by a huge morphological and molecular diversity emerging as a result of genomic instability that may be reflected at the level of chromosomal instability affecting critical genes involved in tumorigenesis. The complexity of this genomic disease demands for a multilevel approach in the research of cancer onset and progression and the best targets to develop new cancer therapies. Model organisms and their respective cell lines play here a crucial role. Rodent species such as mouse and rat have been widely used as models, as most of the important pathways implicated in cancer are driven by orthologous genetic events present in both rodent and human tumors. Increasingly refined analyses based on Fluorescent in situ hybridization (FISH) in cancer cell chromosomes have been a key element in unveiling the mechanisms of cancer and in showing that specific and recurrent abnormalities are associated with specific cancer types. This is a rapid, sensitive, and powerful technique based on nucleic acid hybridization between a fluorescently labeled DNA probe and a complementary sequence (DNA/RNA) on cytological targets (cells, metaphase chromosomes, interphase nuclei, or extended chromatin fibers) or on non-cytological targets (microarrays). The choice of the specific probe or approach is based on the aim of the study, and in particular, of the required information or resolution of the alterations, and consequently of the genes involved and protein products formed. The combination of techniques complementing each other allows a superior enhancement in the analysis of specific chromosome patterns and in the characterization of tumor karyotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawan C, Vaissière T, Murr R, Herceg Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res. 2008;642(1-2):1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8.

    Article  CAS  PubMed  Google Scholar 

  4. McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012;13(6):528–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Forment JV, Kaidi A, Jackson SP. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer. 2012;12(10):663–70.

    Article  CAS  PubMed  Google Scholar 

  6. Berger R, Bernard OA. Jumping translocations. Genes Chromosomes Cancer. 2007;46(8):717–23.

    Article  CAS  PubMed  Google Scholar 

  7. Ricke RM, van Ree JH, van Deursen JM. Whole chromosome instability and cancer: a complex relationship. Trends Genet. 2008;24(9):457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet. 2003;34(4):369–76.

    Article  CAS  PubMed  Google Scholar 

  9. Micale MA. Classical and molecular cytogenetic analysis of hematolymphoid disorders. In: Eds D. Crisan, Hematopathology: genomic mechanisms of neoplastic diseases. Humana: New York; 2010. p. 39–78.

    Google Scholar 

  10. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144(1):27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11(10):685–96.

    Article  CAS  PubMed  Google Scholar 

  12. Dorritie K, Montagna C, Difilippantonio MJ, Ried T. Advanced molecular cytogenetics in human and mouse. Expert Rev Mol Diagn. 2004;4(5):663–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thompson SL, Compton DA. Chromosomes and cancer cells. Chromosome Res. 2010;19(3):433–44.

    Article  Google Scholar 

  14. Bernheim A. Cytogenomics of cancers: from chromosome to sequence. Mol Oncol. 2010;4(4):309–22.

    Article  CAS  PubMed  Google Scholar 

  15. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7(4):233–45.

    Article  CAS  PubMed  Google Scholar 

  16. Anisimov VN, Ukraintseva SV, Yashin AI. Cancer in rodents: does it tell us about cancer in humans? Nat Rev Cancer. 2005;5(10):807–19.

    Article  CAS  PubMed  Google Scholar 

  17. Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol. 2007;170(3):793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheon D, Orsulic S. Mouse models of cancer. Annu Rev Pathol Mech Dis. 2011;6(1):95–119.

    Article  CAS  Google Scholar 

  19. Szpirer C. Cancer research in rat models. Methods Mol Biol. 2010;597:445–58.

    Article  CAS  PubMed  Google Scholar 

  20. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  Google Scholar 

  21. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520–62.

    Google Scholar 

  22. Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428:493–521.

    Article  CAS  Google Scholar 

  23. Louzada S, Adega F, Chaves R. Defining the sister rat mammary tumor cell lines HH-16 cl.2/1 and HH-16.cl.4 as an in vitro cell model for Erbb2. PLoS One. 2012;7(1), e29923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rangarajan A, Weinberg RA. Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer. 2003;3(12):952–9.

    Article  CAS  PubMed  Google Scholar 

  25. Maser RS, Choudhury B, Campbell PJ, Feng B, Wong K, Protopopov A, et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature. 2007;447(7147):966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang G, Tong C, Kumbhani DS, Ashton C, Yan H, Ying Q. Beyond knockout rats: new insights into finer genome manipulation in rats. Cell Cycle. 2011;10(7):1059–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Szpirer C, Szpirer J. Mammary cancer susceptibility: human genes and rodent models. Mamm Genome. 2007;18(12):817–31.

    Article  PubMed  Google Scholar 

  28. Guffei A, Lichtensztejn Z, Gonçalves Dos Santos Silva A, Louis SF, Caporali A, Mai S. c-Myc-dependent formation of Robertsonian translocation chromosomes in mouse cells. Neoplasia. 2007;9(7):578–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Montagna C, Lyu M, Hunter K, Lukes L, Lowther W, Reppert T, et al. The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res. 2003;63(9):2179–87.

    CAS  PubMed  Google Scholar 

  30. Montagna C, Andrechek ER, Padilla-Nash H, Muller WJ, Ried T. Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/neu define mouse mammary gland adenocarcinomas induced by mutant HER2/neu. Oncogene. 2002;21(6):890–8.

    Article  CAS  PubMed  Google Scholar 

  31. Heiliger K, Hess J, Vitagliano D, Salerno P, Braselmann H, Salvatore G, et al. Novel candidate genes of thyroid tumourigenesis identified in Trk-T1 transgenic mice. Endocr Relat Cancer. 2012;19(3):409–21.

    Article  CAS  PubMed  Google Scholar 

  32. Deng Z, Wang Z, Xiang C, Molczan A, Baubet V, Conejo-Garcia J, et al. Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. J Cell Sci. 2012;125(Pt 18):4383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Direcks WGE, van Gelder M, Lammertsma AA, Molthoff CFM. A new rat model of human breast cancer for evaluating efficacy of new anti-cancer agents in vivo. Cancer Biol Ther. 2008;7(4):532–7.

    Article  CAS  PubMed  Google Scholar 

  34. Sargent LM, Senft JR, Lowry DT, Jefferson AM, Tyson FL, Malkinson AM, et al. Specific chromosomal aberrations in mouse lung adenocarcinoma cell lines detected by spectral karyotyping: a comparison with human lung adenocarcinoma. Cancer Res. 2002;62(4):1152–7.

    CAS  PubMed  Google Scholar 

  35. Meuwissen R, Berns A. Mouse models for human lung cancer. Genes Dev. 2005;19(6):643–64.

    Article  CAS  PubMed  Google Scholar 

  36. Logan JA. Chromosomes in the mouse. Science. 1908;27:443–4.

    Google Scholar 

  37. Painter TS. The chromosomes of rodents. Science. 1926;64:336.

    Article  CAS  PubMed  Google Scholar 

  38. Tjio JH, Levan A. The chromosome number in man. Hereditas. 1956;42:1–6.

    Article  Google Scholar 

  39. Vrba M, Donner L. Chromosome numbers and karyotypes of two rat tumours induced by rous sarcoma virus in vitro. Folia Biol. 1964;10:373–80.

    CAS  Google Scholar 

  40. Winge Ö. Zytologische Untersuchungen über die Natur maligner Tumoren. Z Zelforsch Mikrosk Anat. 1930;10(4):683–735.

    Article  Google Scholar 

  41. Hsu TC. Human and mammalian cytogenetics: an historical perspective. New York: Springer; 1979. 186pp.

    Book  Google Scholar 

  42. Caspersson T, Zech L, Johansson C. Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res. 1970;60(3):315–9.

    Article  CAS  PubMed  Google Scholar 

  43. Shepard JS, Wurster-Hill DH, Pettengill OS, Sorenson GD. Giemsa-banded chromosomes of mouse myeloma in relationship to oncogenicity. Cytogenet Cell Genet. 1974;13(3):279–309.

    Article  CAS  PubMed  Google Scholar 

  44. Crews S, Barth R, Hood L, Prehn J, Calame K. Mouse c-myc oncogene is located on chromosome 15 and translocated to chromosome 12 in plasmacytomas. Science. 1982;218(4579):1319–21.

    Article  CAS  PubMed  Google Scholar 

  45. Adhvaryu S. Chromosome analysis in cancer patients: applications and limitations. In: Eds Günter Obe, Vijayalaxmi, Chromosomal alterations. Berlin: Springer; 2007. p. 479–93.

    Google Scholar 

  46. Ried T, Difilippantonio M. Characterization of chromosomal translocations in mouse models of hematological malignancies using spectral karyotyping, FISH, and immunocytochemistry. In: Eds Jeffrey E. Green, Thomas Ried, Genetically engineered mice for cancer research. New York: Springer; 2012. p. 193–207.

    Google Scholar 

  47. Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet. 2005;6(10):782–92.

    Article  CAS  PubMed  Google Scholar 

  48. Fabris VT, Lodillinsky C, Pampena MB, Belgorosky D, Lanari C, Eiján AM. Cytogenetic characterization of the murine bladder cancer model MB49 and the derived invasive line MB49-I. Cancer Genet. 2012;205(4):168–76.

    Article  CAS  PubMed  Google Scholar 

  49. Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986;83:2934–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cremer T, Landegent J, Bruckner A, Scholl HP, Schardin M, Hager HD, et al. Detection of chromosome aberrations in the human inter- phase nucleus by visualization of specific target DNA’s with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum Genet. 1986;74:346–52.

    Article  CAS  PubMed  Google Scholar 

  51. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72(19):4875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weier HG, Greulich-Bode KM, Ito Y, Lersch RA, Fung J. FISH in cancer diagnosis and prognostication: from cause to course of disease. Expert Rev Mol Diagn. 2002;2(2):109–19.

    Article  CAS  PubMed  Google Scholar 

  54. Tönnies H. Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol Med. 2002;8(6):246–50.

    Article  PubMed  Google Scholar 

  55. Ried T, Liyanage M, du Manoir S, Heselmeyer K, Auer G, Macville M, et al. Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping. J f Mol Med. 1997;75(11–12):801–14.

    Article  CAS  Google Scholar 

  56. Miura Y, Keira Y, Ogino J, Nakanishi K, Noguchi H, Inoue T, et al. Detection of specific genetic abnormalities by fluorescence in situ hybridization in soft tissue tumors. Pathol Int. 2011;62(1):16–27.

    Article  PubMed  CAS  Google Scholar 

  57. Brandal P, Micci F, Bjerkehagen B, Eknæs M, Larramendy M, Lothe RA, et al. Molecular cytogenetic characterization of desmoid tumors. Cancer Genet Cytogenet. 2003;146(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  58. Heng H. Released chromatin or DNA fiber preparations for high-resolution fiber FISH. In: Eds I.A. Darby, In situ hybridization protocols, vol. 123. Humana: New Jersey: Humana Press; 2000. p. 69–81.

    Google Scholar 

  59. Wang N. Methodologies in cancer cytogenetics and molecular cytogenetics. Am J Med Genet. 2002;115(3):118–24.

    Article  PubMed  Google Scholar 

  60. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20(2):207–11.

    Article  CAS  PubMed  Google Scholar 

  61. Chung Y, Jonkers J, Kitson H, Fiegler H, Humphray S, Scott C, et al. A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization. Genome Res. 2004;14(1):188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shaffer LG. Microarray-based cytogenetics. In: Eds Steven L. Gersen, Martha B. Keagle, The principles of clinical cytogenetics. New York: Springer; 2013. p. 441–50.

    Google Scholar 

  63. Cho EK. Array-based comparative genomic hybridization and its application to cancer genomes and human genetics. J Lung Cancer. 2011;10(2):77–86.

    Article  CAS  Google Scholar 

  64. Silva AG, Graves HA, Guffei A, Ricca TI, Mortara RA, Jasiulionis MG, Mai S. Telomere-centromere-driven genomic instability contributes to karyotype evolution in a mouse model of melanoma. Neoplasia. 2010;12(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  65. Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest. 2010;120(4):1298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu J, Tsourkas A. Imaging individual microRNAs in single mammalian cells in situ. Nucleic Acids Res. 2009;37(14), e100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Adamovic T, Trossö F, Roshani L, Andersson L, Petersen G, Rajaei S, et al. Oncogene amplification in the proximal part of chromosome 6 in rat endometrial adenocarcinoma as revealed by combined BAC/PAC FISH, chromosome painting, zoo-FISH, and allelotyping. Genes Chromosomes Cancer. 2005;44(2):139–53.

    Article  CAS  PubMed  Google Scholar 

  68. Karlsson A, Helou K, Walentinsson A, Hedrich HJ, Szpirer C, Levan G. Amplification of Mycn, Ddx1, Rrm2, and Odc1 in rat uterine endometrial carcinomas. Genes Chromosomes Cancer. 2001;31(4):345–56.

    Article  CAS  PubMed  Google Scholar 

  69. Ried T, Schröck E, Ning Y, Wienberg J. Chromosome painting: a useful art. Hum Mol Genet. 1998;7(10):1619–26.

    Article  CAS  PubMed  Google Scholar 

  70. Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BA, Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13(3):718–25.

    Article  CAS  PubMed  Google Scholar 

  71. Guan XY, Zhang H, Bittner M, Jiang Y, Meltzer P, Trent J. Chromosome arm painting probes. Nat Genet. 1996;12(1):10–1.

    Article  CAS  PubMed  Google Scholar 

  72. Guan XY, Trent JM, Meltzer PS. Generation of band-specific painting probes from a single microdissected chromosome. Hum Mol Genet. 1993;2(8):1117–21.

    Article  CAS  PubMed  Google Scholar 

  73. Doležel J, Vrána J, Safář J, Bartoš J, Kubaláková M, Simková H. Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics. 2012;12(3):397–416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Adega F, Chaves R, Kofler A, Krausman PR, Masabanda J, Wienberg J, et al. High-resolution comparative chromosome painting in the Arizona collared peccary (Pecari tajacu, Tayassuidae): a comparison with the karyotype of pig and sheep. Chromosome Res. 2006;14(3):243–51.

    Article  CAS  PubMed  Google Scholar 

  75. Liechty MC, Hall BK, Scalzi JM, Davis LM, Caspary WJ, Hozier JC. Mouse chromosome-specific painting probes generated from microdissected chromosomes. Mamm Genome. 1995;6(9):592–4.

    Article  CAS  PubMed  Google Scholar 

  76. Yang F, Trifonov V, Ng BL, Kosyakova N, Carter NP. Generation of paint probes by flow-sorted and microdissected chromosomes. In: Eds Thomas Liehr, Fluorescence in situ hybridization (FISH)—application guide. Berlin: Springer; 2009. p. 35–52.

    Google Scholar 

  77. Louzada S, Paço A, Kubickova S, Adega F, Guedes-Pinto H, Rubes J, et al. Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning. Micron. 2008;39(8):1149–55.

    Article  CAS  PubMed  Google Scholar 

  78. Meltzer PS, Guan XY, Burgess A, Trent JM. Rapid generation of region specific probes by chromosome microdissection and their application. Nat Genet. 1992;1(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  79. Carter NP, Ferguson-Smith MA, Perryman MT, Telenius H, Pelmear AH, Leversha MA, et al. Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet. 1992;29(5):299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Coleman AE, Kovalchuk AL, Janz S, Palini A, Ried T. Jumping translocation breakpoint regions lead to amplification of rearranged Myc. Blood. 1999;93(12):4442–4.

    CAS  PubMed  Google Scholar 

  81. Speicher MR, Gwyn Ballard S, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet. 1996;12(4):368–75.

    Article  CAS  PubMed  Google Scholar 

  82. Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, et al. Multicolour spectral karyotyping of mouse chromosomes. Nat Genet. 1996;14(3):312–5.

    Article  CAS  PubMed  Google Scholar 

  83. Tanke HJ, Wiegant J, van Gijlswijk RP, Bezrookove V, Pattenier H, Heetebrij RJ, et al. New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur J Hum Genet. 1999;7(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  84. Bayani JM, Squire JA. Applications of SKY in cancer cytogenetics. Cancer Invest. 2002;20(3):373–86.

    Article  PubMed  Google Scholar 

  85. Macville M, Veldman T, Padilla-Nash H, Wangsa D, O’Brien P, Schröck E, et al. Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. Histochem Cell Biol. 1997;108(4-5):299–305.

    Article  CAS  PubMed  Google Scholar 

  86. Falck E, Hedberg C, Klinga-Levan K, Behboudi A. SKY analysis revealed recurrent numerical and structural chromosome changes in BDII rat endometrial carcinomas. Cancer Cell Int. 2011;11(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Buwe A, Steinlein C, Koehler MR, Bar-Am I, Katzin N, Schmid M. Multicolor spectral karyotyping of rat chromosomes. Cytogenet Genome Res. 2003;103(1-2):163–8.

    Article  CAS  PubMed  Google Scholar 

  88. Vajen B, Modlich U, Schienke A, Wolf S, Skawran B, Hofmann W, et al. Histone methyltransferase Suv39h1 deficiency prevents Myc-induced chromosomal instability in murine myeloid leukemias. Genes Chromosomes Cancer. 2013;52(4):423–30.

    Article  CAS  PubMed  Google Scholar 

  89. Weaver Z, Montagna C, Xu X, Howard T, Gadina M, Brodie SG, et al. Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene. 2002;21(33):5097–107.

    Article  CAS  PubMed  Google Scholar 

  90. Coleman A, Schrock E, Weaver Z, du Manoir S, Yang F, Ferguson-Smith M, et al. Previously hidden chromosome aberrations in T (12; 15)-positive BALB/c plasmacytomas uncovered by multicolor spectral karyotyping. Cancer Res. 1997;57:4585–92.

    CAS  PubMed  Google Scholar 

  91. Karst C, Trifonov V, Romanenko SA, Claussen U, Mrasek K, Michel S, et al. Molecular cytogenetic characterization of the mouse cell line WMP2 by spectral karyotyping and multicolor banding applying murine probes. Int J Mol Med. 2006;17(2):209–13.

    PubMed  Google Scholar 

  92. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083):818–21.

    Article  CAS  PubMed  Google Scholar 

  93. Christian AT, Snyderwine EG, Tucker JD. Comparative genomic hybridization analysis of PhIP-induced mammary carcinomas in rats reveals a cytogenetic signature. Mutat Res. 2002;506–507:113–9.

    Article  PubMed  Google Scholar 

  94. Pinkel D, Albertson DG. Comparative genomic hybridization. Annu Rev Genomics Hum Genet. 2005;6(1):331–54.

    Article  CAS  PubMed  Google Scholar 

  95. Salawu A, Ul-Hassan A, Hammond D, Fernando M, Reed M, Sisley K. High quality genomic copy number data from archival formalin-fixed paraffin-embedded leiomyosarcoma: optimisation of universal linkage system labelling. PLoS One. 2012;7(11), e50415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJF, et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A. 2003;100(13):7737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Valli R, Marletta C, Pressato B, Montalbano G, lo Curto F, Pasquali F, et al. Comparative genomic hybridization on microarray (a-CGH) in constitutional and acquired mosaicism may detect as low as 8% abnormal cells. Mol Cytogenet. 2011;4(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kogan SC, Brown DE, Shultz DB, Truong BT, Lallemand-Breitenbach V, Guillemin MC, et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor alpha chimeric protein (PMLRARalpha) to block neutrophil differentiation and initiate acute leukemia. J Exp Med. 2001;193(4):531–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, et al. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci U S A. 1994;91(6):2156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zheng W, Gustafson DR, Sinha R, Cerhan JR, Moore D, Hong CP, et al. Well-done meat intake and the risk of breast cancer. J Natl Cancer Inst. 1998;90(22):1724–9.

    Article  CAS  PubMed  Google Scholar 

  101. Climent J, Garcia JL, Mao JH, Arsuaga J, Perez-Losada J. Characterization of breast cancer by array comparative genomic hybridization. Biochem Cell Biol. 2007;85(4):497–508. This paper is one of a selection of papers published in this Special Issue, entitled 28th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal’s usual peer review process.

    Article  CAS  PubMed  Google Scholar 

  102. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Döhner H, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997;20(4):399–407.

    Article  CAS  PubMed  Google Scholar 

  103. van den Ijssel P, Tijssen M, Chin S, Eijk P, Carvalho B, Hopmans E, et al. Human and mouse oligonucleotide-based array CGH. Nucleic Acids Res. 2005;33(22), e192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zhao X, Li C, Paez JG, Chin K, Jänne PA, Chen T, et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 2004;64(9):3060–71.

    Article  CAS  PubMed  Google Scholar 

  105. Hodgson G, Hager JH, Volik S, Hariono S, Wernick M, Moore D, et al. Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nat Genet. 2001;29(4):459–64.

    Article  CAS  PubMed  Google Scholar 

  106. Hackett CS, Hodgson JG, Law ME, Fridlyand J, Osoegawa K, de Jong PJ, et al. Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. Cancer Res. 2003;63(17):5266–73.

    CAS  PubMed  Google Scholar 

  107. Sander S, Bullinger L, Karlsson A, Giuriato S, Hernandez-Boussard T, Felsher DW, et al. Comparative genomic hybridization on mouse cDNA microarrays and its application to a murine lymphoma model. Oncogene. 2005;24(40):6101–7.

    Article  CAS  PubMed  Google Scholar 

  108. van de Wiel MA, Costa JL, Smid K, Oudejans CBM, Bergman AM, Meijer GA, et al. Expression microarray analysis and oligo array comparative genomic hybridization of acquired gemcitabine resistance in mouse colon reveals selection for chromosomal aberrations. Cancer Res. 2005;65(22):10208–13.

    Article  PubMed  CAS  Google Scholar 

  109. Yi Y, Nandana S, Case T, Nelson C, Radmilovic T, Matusik RJ, et al. Candidate metastasis suppressor genes uncovered by array comparative genomic hybridization in a mouse allograft model of prostate cancer. Mol Cytogenet. 2009;2(1):18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. To MD, Quigley DA, Mao JH, del Rosario R, Hsu J, Hodgson G, et al. Progressive genomic instability in the FVB/KrasLA2 mouse model of lung cancer. Mol Cancer Res. 2011;9(10):1339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kazmi SJ, Byer SJ, Eckert JM, Turk AN, Huijbregts RPH, Brossier NM, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol. 2013;182(3):646–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Samuelson E, Karlsson S, Partheen K, Nilsson S, Szpirer C, Behboudi A. BAC CGH-array identified specific small-scale genomic imbalances in diploid DMBA-induced rat mammary tumors. BMC Cancer. 2012;12:352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fiegler H, Gribble SM, Burford DC, Carr P, Prigmore E, Porter KM, et al. Array painting: a method for the rapid analysis of aberrant chromosomes using DNA microarrays. J Med Genet. 2003;40(9):664–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gribble SM, Ng BL, Prigmore E, Fitzgerald T, Carter NP. Array painting: a protocol for the rapid analysis of aberrant chromosomes using DNA microarrays. Nat Protoc. 2009;4(12):1722–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Baptista J, Mercer C, Prigmore E, Gribble SM, Carter NP, Maloney V, et al. Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet. 2008;82(4):927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chudoba I, Plesch A, Lörch T, Lemke J, Claussen U, Senger G. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet Cell Genet. 1999;84(3-4):156–60.

    Article  CAS  PubMed  Google Scholar 

  117. Liehr T, Gross M, Karst C, Glaser M, Mrasek K, Starke H, et al. FISH banding in tumor cytogenetics. Cancer Genet Cytogenet. 2006;164(1):88–9.

    Article  CAS  PubMed  Google Scholar 

  118. Liehr T, Weise A, Hinreiner S, Mkrtchyan H, Mrasek K, Kosyakova N. Characterization of chromosomal rearrangements using multicolor-banding (MCB/m-band). In: Eds J.M. Bridger, K. Morris, Fluorescence in situ hybridization (FISH). Humana: New York: Humana Press; 2010. p. 231–8.

    Google Scholar 

  119. Kosyakova N, Hamid AB, Chaveerach A, Pinthong K, Siripiyasing P, Supiwong W, et al. Generation of multicolor banding probes for chromosomes of different species. Mol Cytogenet. 2013;6(1):1–1.

    Article  CAS  Google Scholar 

  120. Trifonov VA, Kosyakova N, Romanenko SA, Stanyon R, Graphodatsky AS, Liehr T. New insights into the karyotypic evolution in muroid rodents revealed by multicolor banding applying murine probes. Chromosome Res. 2010;18(2):265–75.

    Article  CAS  PubMed  Google Scholar 

  121. Leibiger C, Kosyakova N, Mkrtchyan H, Glei M, Trifonov V, Liehr T. First molecular cytogenetic high resolution characterization of the NIH 3T3 cell line by murine multicolor banding. J Histochem Cytochem. 2013;61(4):306–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Benedeck K, Chudoba I, Klein G, Wiener F, Mai S. Rearrangements of the telomeric region of mouse chromosome 11 in Pre-B ABL/MYC cells revealed by mBANDing, spectral karyotyping, and fluorescence in-situ hybridization with a subtelomeric probe. Chromosome Res. 2004;12:777–85.

    Article  CAS  Google Scholar 

  123. Liechty MC, Carpio CM, Aytay S, Clase AC, Puschus KL, Sims KR, et al. Hybridization-based karyotyping of mouse chromosomes: hybridization-bands. Cytogenet Cell Genet. 1999;86(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  124. Henegariu O, Dunai J, Chen XN, Korenberg JR, Ward DC, Greally JM. A triple color FISH technique for mouse chromosome identification. Mamm Genome. 2001;12(6):462–5.

    Article  CAS  PubMed  Google Scholar 

  125. Müller S, O’Brien PC, Ferguson-Smith MA, Wienberg J. Cross-species colour segmenting: a novel tool in human karyotype analysis. Cytometry. 1998;33(4):445–52.

    Article  PubMed  Google Scholar 

  126. Müller S, Wienberg J. Multicolor chromosome bar codes. Cytogenet Genome Res. 2006;114(3-4):245–9.

    Article  PubMed  Google Scholar 

  127. Gonçalves Dos Santos Silva A, Sarkar R, Harizanova J, Guffei A, Mowat M, Garini Y, et al. Centromeres in cell division, evolution, nuclear organization and disease. J Cell Biochem. 2008;104(6):2040–58.

    Article  PubMed  CAS  Google Scholar 

  128. Murnane JP. Telomere dysfunction and chromosome instability. Mutat Res. 2012;730(1-2):28–36.

    Article  CAS  PubMed  Google Scholar 

  129. Hoebee B, de Stoppelaar JM, Suijkerbuijk RF, Monard S. Isolation of rat chromosome-specific paint probes by bivariate flow sorting followed by degenerate oligonucleotide primed-PCR. Cytogenet Cell Genet. 1994;66(4):277–82.

    Article  CAS  PubMed  Google Scholar 

  130. Doherty AT, Ellard S, Parry EM, Parry JM. A study of the aneugenic activity of trichlorfon detected by centromere-specific probes in human lymphoblastoid cell lines. Mutat Res. 1996;372(2):221–31.

    Article  CAS  PubMed  Google Scholar 

  131. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997;91(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  132. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet. 2001;28(2):155–9.

    Article  CAS  PubMed  Google Scholar 

  133. Begus-Nahrmann Y, Hartmann D, Kraus J, Eshraghi P, Scheffold A, Grieb M, et al. Transient telomere dysfunction induces chromosomal instability and promotes carcinogenesis. J Clin Invest. 2012;122(6):2283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sarkar R, Guffei A, Vermolen BJ, Garini Y, Mai S. Alterations of centromere positions in nuclei of immortalized and malignant mouse lymphocytes. Cytometry A. 2007;71(6):386–92.

    Article  PubMed  Google Scholar 

  135. Le Beau MM, Bitts S, Davis EM, Kogan SC. Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice parallel human acute promyelocytic leukemia. Blood. 2002;99(8):2985–91.

    Article  PubMed  Google Scholar 

  136. Le Beau MM, Davis EM, Patel B, Phan VT, Sohal J, Kogan SC. Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice identify cooperating events and genetic pathways to acute promyelocytic leukemia. Blood. 2003;102(3):1072–4.

    Article  PubMed  CAS  Google Scholar 

  137. Machluf Y, Levkowitz G. Visualization of mRNA expression in the zebrafish embryo. In: Eds J.E. Gerst, RNA detection and visualization, vol. 714. Humana: New York: Humana Press; 2011. p. 83–102.

    Google Scholar 

  138. Lécuyer E. High resolution fluorescent in situ hybridization in Drosophila. In: Eds J.E. Gerst, RNA Detection and visualization, vol. 714. Humana: New York: Humana Press; 2011. p. 31–47.

    Google Scholar 

  139. Tam R, Shopland LS, Johnson von C, McNeil JA, Lawrence AJB. Applications of RNA FISH for visualizing gene expression and nuclear architecture. In: Eds Barbara Beatty, Sabine Mai, Jeremy Squire, FISH: New York: Oxford University Press; 2002. p. 93.

    Google Scholar 

  140. Itzkovitz S, van Oudenaarden A. Validating transcripts with probes and imaging technology. Nat Methods. 2011;8(4s):S12–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 2011;331(6017):593–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yildirim E, Kirby JE, Brown DE, Mercier FE, Sadreyev RI, Scadden DT, et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell. 2013;152(4):727–42.

    Article  CAS  PubMed  Google Scholar 

  143. Ganesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, Miron A, et al. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell. 2002;111(3):393–405.

    Article  CAS  PubMed  Google Scholar 

  144. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007;318(5851):798–801.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kosyakova et al. [119] and BioMed Central for reproduction of Fig. 3.4; Sandra Louzada, Susana Meles, and João Castro, all from our group, for the DNA and RNA FISH figures; and Science and Technology Foundation (FCT) from Portugal for sponsoring the PhD grant SFRH/BD/80808/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Chaves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mendes-da-Silva, A., Adega, F., Chaves, R. (2016). Importance of Fluorescent In Situ Hybridization in Rodent Tumors. In: Aziz, S., Mehta, R. (eds) Technical Aspects of Toxicological Immunohistochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1516-3_3

Download citation

Publish with us

Policies and ethics